Accordion-like honeycombs for tissue engineering of cardiac anisotropy (original) (raw)
References
Macchiarelli, G. et al. A micro-anatomical model of the distribution of myocardial endomysial collagen. Histol. Histopathol.17, 699–706 (2002). CAS Google Scholar
Hanley, P. J., Young, A. A., LeGrice, I. J., Edgar, S. G. & Loiselle, D. S. Three dimensional configuration of perimysial collagen fibres in rat cardiac muscle at resting and extended sarcomere lengths. J. Physiol.517, 831–837 (1999). ArticleCAS Google Scholar
Holmes, J. W., Borg, T. K. & Covell, J. W. Structure and mechanics of healing myocardial infarcts. Annu. Rev. Biomed. Eng.7, 223–253 (2005). ArticleCAS Google Scholar
Costa, K. D., Lee, E. J. & Holmes, J. W. Creating alignment and anisotropy in engineered heart tissue: Role of boundary conditions in a model three-dimensional culture system. Tissue Eng.9, 567–577 (2003). Article Google Scholar
Akhyari, P. et al. Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation106, I137–I142 (2002). Google Scholar
Fink, C. et al. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J.14, 669–679 (2000). ArticleCAS Google Scholar
Radisic, M. et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl Acad. Sci. USA101, 18129–18134 (2004). ArticleCAS Google Scholar
Bursac, N. et al. Cardiac muscle tissue engineering: Toward an in vitro model for electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol.277, H433–444 (1999). ArticleCAS Google Scholar
Papadaki, M. et al. Tissue engineering of functional cardiac muscle: Molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ Physiol.280, H168–H178 (2001). ArticleCAS Google Scholar
Yeo, Y. et al. Photocrosslinkable hydrogel for myocyte cell culture and injection. J. Biomed. Mater. Res. B81, 312–322 (2007). Article Google Scholar
Zimmermann, W. H. et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Med.12, 452–458 (2006). ArticleCAS Google Scholar
Feng, Z., Matsumoto, T. & Nakamura, T. Measurements of the mechanical properties of contracted collagen gels populated with rat fibroblasts or cardiomyocytes. J. Artif Organs6, 192–196 (2003). ArticleCAS Google Scholar
Ott, H. C. et al. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Med.14, 213–221 (2008). ArticleCAS Google Scholar
Wang, Y., Ameer, G. A., Sheppard, B. J. & Langer, R. A tough biodegradable elastomer. Nature Biotechnol.20, 602–606 (2002). ArticleCAS Google Scholar
Wang, Y., Kim, Y. M. & Langer, R. In vivo degradation characteristics of poly(glycerol sebacate). J. Biomed. Mater. Res. A66, 192–197 (2003). Article Google Scholar
Bettinger, C. J., Orrick, B., Misra, A., Langer, R. & Borenstein, J. T. Microfabrication of poly (glycerol-sebacate) for contact guidance applications. Biomaterials27, 2558–2565 (2006). ArticleCAS Google Scholar
Bettinger, C. J. et al. Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Adv. Mater.18, 165 (2006). ArticleCAS Google Scholar
Radisic, M. et al. Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol. Bioeng.93, 332–343 (2006). ArticleCAS Google Scholar
Chuong, C. J., Sacks, M. S., Templeton, G., Schwiep, F. & Johnson, R. L. Jr. Regional deformation and contractile function in canine right ventricular free wall. Am. J. Physiol.260, H1224–H1235 (1991). ArticleCAS Google Scholar
Rappaport, D., Adam, D., Lysyansky, P. & Riesner, S. Assessment of myocardial regional strain and strain rate by tissue tracking in B-mode echocardiograms. Ultrasound Med. Biol.32, 1181–1192 (2006). Article Google Scholar
Sacks, M. S. & Chuong, C. J. Biaxial mechanical properties of passive right ventricular free wall myocardium. J. Biomech. Eng.115, 202–205 (1993). ArticleCAS Google Scholar
Kocica, M. J. et al. The helical ventricular myocardial band: Global, three-dimensional, functional architecture of the ventricular myocardium. Eur. J. Cardiothorac. Surg.29, S21–S40 (2006). Article Google Scholar
Streeter, D. D. Jr, Spotnitz, H. M., Patel, D. P., Ross, J. Jr & Sonnenblick, E. H. Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res.24, 339–347 (1969). Article Google Scholar
Bautista-Hernandez, V. et al. Coarctectomy reduces neoaortic arch obstruction in hypoplastic left heart syndrome. J. Thorac. Cardiovasc. Surg.133, 1540–1546 (2007). Article Google Scholar
Reinhartz, O. et al. Homograft valved right ventricle to pulmonary artery conduit as a modification of the Norwood procedure. Circulation114, I594–I599 (2006). Article Google Scholar
Kinch, J. W. & Ryan, T. J. Right ventricular infarction. N. Engl. J. Med.330, 1211–1217 (1994). ArticleCAS Google Scholar
Gumina, R. J., Murphy, J. G., Rihal, C. S., Lennon, R. J. & Wright, R. S. Long-term survival after right ventricular infarction. Am. J. Cardiol.98, 1571–1573 (2006). Article Google Scholar
Gao, J., Crapo, P. M. & Wang, Y. Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Eng.12, 917–925 (2006). ArticleCAS Google Scholar
Chen, Q. Z. et al. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials29, 47–57 (2008). Article Google Scholar
Radisic, M. et al. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J. Biomed. Mater. Res. A86, 713–724 (2008). Article Google Scholar
Radisic, M. et al. Biomimetic approach to cardiac tissue engineering: Oxygen carriers and channeled scaffolds. Tissue Eng.12, 2077–2091 (2006). ArticleCAS Google Scholar
Crapo, P. M., Gao, J & Wang, Y. Seamless tubular poly(glycerol sebacate) scaffolds: High-yield fabrication and potential applications. J. Biomed. Mater. Res. A86, 354–363 (2008). Article Google Scholar
Boublik, J. et al. Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. Tissue Eng.11, 1122–1132 (2005). ArticleCAS Google Scholar
Cheng, M., Park, H., Engelmayr, G. C., Moretti, M. & Freed, L. E. Effects of regulatory factors on engineered cardiac tissue in vitro. Tissue Eng.13, 2709–2719 (2007). ArticleCAS Google Scholar
Cheng, M., Moretti, M., Engelmayr, G. C. Jr & Freed, L. E. Insulin-like growth factor-I and perfusion enhance the formation of tissue engineered cardiac grafts. Tissue Eng. 10.1089/ten.tea.2008.0077 (in the press; PMID: 18759675).
Bardou, A. L. et al. Directional variability of stimulation threshold measurements in isolated guinea pig cardiomyocytes: Relationship with orthogonal sequential defibrillating pulses. Pacing Clin. Electrophysiol.13, 1590–1595 (1990). ArticleCAS Google Scholar
Ranjan, R. & Thakor, N. V. Electrical stimulation of cardiac myocytes. Ann. Biomed. Eng.23, 812–821 (1995). ArticleCAS Google Scholar
Bursac, N. et al. Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. Tissue Eng.9, 1243–1253 (2003). ArticleCAS Google Scholar
Engelmayr, G. C. Jr, Papworth, G. D., Watkins, S. C., Mayer, J. E. Jr & Sacks, M. S. Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures. J. Biomech.39, 1819–1831 (2006). Article Google Scholar
Nichol, J. W., Engelmayr, G. C. Jr, Cheng, M. & Freed, L. E. Co-culture induces alignment in engineered cardiac constructs via MMP-2 expression. Biochem. Biophys. Res. Commun.373, 360–365 (2008). ArticleCAS Google Scholar
Sacks, M. S., Smith, D. B. & Hiester, E. D. A small angle light scattering device for planar connective tissue microstructural analysis. Ann. Biomed. Eng.25, 678–689 (1997). ArticleCAS Google Scholar
Shimizu, T. et al. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J.20, 708–710 (2006). ArticleCAS Google Scholar
Borenstein, J. T. et al. Microfabrication of three-dimensional engineered scaffolds. Tissue Eng.13, 1837–1844 (2007). ArticleCAS Google Scholar
Camelliti, P., Gallagher, J. O., Kohl, P. & McCulloch, A. D. Micropatterned cell cultures on elastic membranes as an in vitro model of myocardium. Nature Protocols1, 1379–1391 (2006). ArticleCAS Google Scholar
Feinberg, A. W. et al. Muscular thin films for building actuators and powering devices. Science317, 1366–1370 (2007). ArticleCAS Google Scholar
Radisic, M. et al. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol.286, H507–H516 (2004). ArticleCAS Google Scholar
Dvir, T., Benishti, N., Shachar, M. & Cohen, S. A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration. Tissue Eng.12, 2843–2852 (2006). ArticleCAS Google Scholar
Dvir, T., Levy, O., Shachar, M., Granot, Y. & Cohen, S. Activation of the ERK1/2 cascade via pulsatile interstitial fluid flow promotes cardiac tissue assembly. Tissue Eng.13, 2185–2193 (2007). ArticleCAS Google Scholar
Dahotre, N. B. & Harimkar, S. P. Laser Fabrication and Machining of Materials (Springer Science Business Media, 2008). Google Scholar
Neeley, W. L. et al. A microfabricated scaffold for retinal progenitor cell grafting. Biomaterials29, 418–426 (2008). ArticleCAS Google Scholar
Ng, C. P., Hinz, B. & Swartz, M. A. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell. Sci.118, 4731–4739 (2005). ArticleCAS Google Scholar
Ayres, C. E. et al. Measuring fiber alignment in electrospun scaffolds: A user’s guide to the 2D fast Fourier transform approach. J. Biomater. Sci. Polym. Ed.19, 603–621 (2008). ArticleCAS Google Scholar
Sander, E. A. & Barocas, V. H. Comparison of 2D fiber network orientation measurement methods. J. Biomed. Mater. Res. A (2008).