Accordion-like honeycombs for tissue engineering of cardiac anisotropy (original) (raw)

References

  1. Macchiarelli, G. et al. A micro-anatomical model of the distribution of myocardial endomysial collagen. Histol. Histopathol. 17, 699–706 (2002).
    CAS Google Scholar
  2. Hanley, P. J., Young, A. A., LeGrice, I. J., Edgar, S. G. & Loiselle, D. S. Three dimensional configuration of perimysial collagen fibres in rat cardiac muscle at resting and extended sarcomere lengths. J. Physiol. 517, 831–837 (1999).
    Article CAS Google Scholar
  3. Holmes, J. W., Borg, T. K. & Covell, J. W. Structure and mechanics of healing myocardial infarcts. Annu. Rev. Biomed. Eng. 7, 223–253 (2005).
    Article CAS Google Scholar
  4. Costa, K. D., Lee, E. J. & Holmes, J. W. Creating alignment and anisotropy in engineered heart tissue: Role of boundary conditions in a model three-dimensional culture system. Tissue Eng. 9, 567–577 (2003).
    Article Google Scholar
  5. Akhyari, P. et al. Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106, I137–I142 (2002).
    Google Scholar
  6. Fink, C. et al. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 14, 669–679 (2000).
    Article CAS Google Scholar
  7. Radisic, M. et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl Acad. Sci. USA 101, 18129–18134 (2004).
    Article CAS Google Scholar
  8. Bursac, N. et al. Cardiac muscle tissue engineering: Toward an in vitro model for electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 277, H433–444 (1999).
    Article CAS Google Scholar
  9. Papadaki, M. et al. Tissue engineering of functional cardiac muscle: Molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ Physiol. 280, H168–H178 (2001).
    Article CAS Google Scholar
  10. Yeo, Y. et al. Photocrosslinkable hydrogel for myocyte cell culture and injection. J. Biomed. Mater. Res. B 81, 312–322 (2007).
    Article Google Scholar
  11. Zimmermann, W. H. et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Med. 12, 452–458 (2006).
    Article CAS Google Scholar
  12. Feng, Z., Matsumoto, T. & Nakamura, T. Measurements of the mechanical properties of contracted collagen gels populated with rat fibroblasts or cardiomyocytes. J. Artif Organs 6, 192–196 (2003).
    Article CAS Google Scholar
  13. Ott, H. C. et al. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Med. 14, 213–221 (2008).
    Article CAS Google Scholar
  14. Wang, Y., Ameer, G. A., Sheppard, B. J. & Langer, R. A tough biodegradable elastomer. Nature Biotechnol. 20, 602–606 (2002).
    Article CAS Google Scholar
  15. Wang, Y., Kim, Y. M. & Langer, R. In vivo degradation characteristics of poly(glycerol sebacate). J. Biomed. Mater. Res. A 66, 192–197 (2003).
    Article Google Scholar
  16. Bettinger, C. J., Orrick, B., Misra, A., Langer, R. & Borenstein, J. T. Microfabrication of poly (glycerol-sebacate) for contact guidance applications. Biomaterials 27, 2558–2565 (2006).
    Article CAS Google Scholar
  17. Bettinger, C. J. et al. Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Adv. Mater. 18, 165 (2006).
    Article CAS Google Scholar
  18. Radisic, M. et al. Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol. Bioeng. 93, 332–343 (2006).
    Article CAS Google Scholar
  19. Chuong, C. J., Sacks, M. S., Templeton, G., Schwiep, F. & Johnson, R. L. Jr. Regional deformation and contractile function in canine right ventricular free wall. Am. J. Physiol. 260, H1224–H1235 (1991).
    Article CAS Google Scholar
  20. Rappaport, D., Adam, D., Lysyansky, P. & Riesner, S. Assessment of myocardial regional strain and strain rate by tissue tracking in B-mode echocardiograms. Ultrasound Med. Biol. 32, 1181–1192 (2006).
    Article Google Scholar
  21. Sacks, M. S. & Chuong, C. J. Biaxial mechanical properties of passive right ventricular free wall myocardium. J. Biomech. Eng. 115, 202–205 (1993).
    Article CAS Google Scholar
  22. Kocica, M. J. et al. The helical ventricular myocardial band: Global, three-dimensional, functional architecture of the ventricular myocardium. Eur. J. Cardiothorac. Surg. 29, S21–S40 (2006).
    Article Google Scholar
  23. Streeter, D. D. Jr, Spotnitz, H. M., Patel, D. P., Ross, J. Jr & Sonnenblick, E. H. Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24, 339–347 (1969).
    Article Google Scholar
  24. Bautista-Hernandez, V. et al. Coarctectomy reduces neoaortic arch obstruction in hypoplastic left heart syndrome. J. Thorac. Cardiovasc. Surg. 133, 1540–1546 (2007).
    Article Google Scholar
  25. Reinhartz, O. et al. Homograft valved right ventricle to pulmonary artery conduit as a modification of the Norwood procedure. Circulation 114, I594–I599 (2006).
    Article Google Scholar
  26. Kinch, J. W. & Ryan, T. J. Right ventricular infarction. N. Engl. J. Med. 330, 1211–1217 (1994).
    Article CAS Google Scholar
  27. Gumina, R. J., Murphy, J. G., Rihal, C. S., Lennon, R. J. & Wright, R. S. Long-term survival after right ventricular infarction. Am. J. Cardiol. 98, 1571–1573 (2006).
    Article Google Scholar
  28. Gao, J., Crapo, P. M. & Wang, Y. Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Eng. 12, 917–925 (2006).
    Article CAS Google Scholar
  29. Chen, Q. Z. et al. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 29, 47–57 (2008).
    Article Google Scholar
  30. Radisic, M. et al. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J. Biomed. Mater. Res. A 86, 713–724 (2008).
    Article Google Scholar
  31. Radisic, M. et al. Biomimetic approach to cardiac tissue engineering: Oxygen carriers and channeled scaffolds. Tissue Eng. 12, 2077–2091 (2006).
    Article CAS Google Scholar
  32. Crapo, P. M., Gao, J & Wang, Y. Seamless tubular poly(glycerol sebacate) scaffolds: High-yield fabrication and potential applications. J. Biomed. Mater. Res. A 86, 354–363 (2008).
    Article Google Scholar
  33. Boublik, J. et al. Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. Tissue Eng. 11, 1122–1132 (2005).
    Article CAS Google Scholar
  34. Cheng, M., Park, H., Engelmayr, G. C., Moretti, M. & Freed, L. E. Effects of regulatory factors on engineered cardiac tissue in vitro. Tissue Eng. 13, 2709–2719 (2007).
    Article CAS Google Scholar
  35. Cheng, M., Moretti, M., Engelmayr, G. C. Jr & Freed, L. E. Insulin-like growth factor-I and perfusion enhance the formation of tissue engineered cardiac grafts. Tissue Eng. 10.1089/ten.tea.2008.0077 (in the press; PMID: 18759675).
  36. Bardou, A. L. et al. Directional variability of stimulation threshold measurements in isolated guinea pig cardiomyocytes: Relationship with orthogonal sequential defibrillating pulses. Pacing Clin. Electrophysiol. 13, 1590–1595 (1990).
    Article CAS Google Scholar
  37. Ranjan, R. & Thakor, N. V. Electrical stimulation of cardiac myocytes. Ann. Biomed. Eng. 23, 812–821 (1995).
    Article CAS Google Scholar
  38. Bursac, N. et al. Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. Tissue Eng. 9, 1243–1253 (2003).
    Article CAS Google Scholar
  39. Engelmayr, G. C. Jr, Papworth, G. D., Watkins, S. C., Mayer, J. E. Jr & Sacks, M. S. Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures. J. Biomech. 39, 1819–1831 (2006).
    Article Google Scholar
  40. Nichol, J. W., Engelmayr, G. C. Jr, Cheng, M. & Freed, L. E. Co-culture induces alignment in engineered cardiac constructs via MMP-2 expression. Biochem. Biophys. Res. Commun. 373, 360–365 (2008).
    Article CAS Google Scholar
  41. Sacks, M. S., Smith, D. B. & Hiester, E. D. A small angle light scattering device for planar connective tissue microstructural analysis. Ann. Biomed. Eng. 25, 678–689 (1997).
    Article CAS Google Scholar
  42. Shimizu, T. et al. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J. 20, 708–710 (2006).
    Article CAS Google Scholar
  43. Borenstein, J. T. et al. Microfabrication of three-dimensional engineered scaffolds. Tissue Eng. 13, 1837–1844 (2007).
    Article CAS Google Scholar
  44. Camelliti, P., Gallagher, J. O., Kohl, P. & McCulloch, A. D. Micropatterned cell cultures on elastic membranes as an in vitro model of myocardium. Nature Protocols 1, 1379–1391 (2006).
    Article CAS Google Scholar
  45. Feinberg, A. W. et al. Muscular thin films for building actuators and powering devices. Science 317, 1366–1370 (2007).
    Article CAS Google Scholar
  46. Radisic, M. et al. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 286, H507–H516 (2004).
    Article CAS Google Scholar
  47. Dvir, T., Benishti, N., Shachar, M. & Cohen, S. A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration. Tissue Eng. 12, 2843–2852 (2006).
    Article CAS Google Scholar
  48. Dvir, T., Levy, O., Shachar, M., Granot, Y. & Cohen, S. Activation of the ERK1/2 cascade via pulsatile interstitial fluid flow promotes cardiac tissue assembly. Tissue Eng. 13, 2185–2193 (2007).
    Article CAS Google Scholar
  49. Dahotre, N. B. & Harimkar, S. P. Laser Fabrication and Machining of Materials (Springer Science Business Media, 2008).
    Google Scholar
  50. Neeley, W. L. et al. A microfabricated scaffold for retinal progenitor cell grafting. Biomaterials 29, 418–426 (2008).
    Article CAS Google Scholar
  51. Ng, C. P., Hinz, B. & Swartz, M. A. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell. Sci. 118, 4731–4739 (2005).
    Article CAS Google Scholar
  52. Ayres, C. E. et al. Measuring fiber alignment in electrospun scaffolds: A user’s guide to the 2D fast Fourier transform approach. J. Biomater. Sci. Polym. Ed. 19, 603–621 (2008).
    Article CAS Google Scholar
  53. Sander, E. A. & Barocas, V. H. Comparison of 2D fiber network orientation measurement methods. J. Biomed. Mater. Res. A (2008).

Download references