Atala, A., Bauer, S. B., Soker, S., Yoo, J. J. & Retik, A. B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet367, 1241–1246 (2006). Google Scholar
Macchiarini, P. et al. Clinical transplantation of a tissue-engineered airway. Lancet372, 2023–2030 (2008). Google Scholar
Lysaght, M. J., Jaklenec, A. & Deweerd, E. Great expectations: Private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics. Tissue Eng. Part A14, 305–315 (2008). Google Scholar
Bouchie, A. Tissue engineering firms go under. Nature Biotechnol.20, 1178–1179 (2002). CAS Google Scholar
Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science276, 60–66 (1997). CAS Google Scholar
Ford, C. E., Hamerton, J. L., Barnes, D. W. & Loutit, J. F. Cytological identification of radiation-chimaeras. Nature177, 452–454 (1956). CAS Google Scholar
Mathe, G., Amiel, J. L., Schwarzenberg, L., Cattan, A. & Schneider, M. Haematopoietic chimera in man after allogenic (homologous) bone-marrow transplantation. (Control of the secondary syndrome. Specific tolerance due to the chimerism). Br. Med. J.5373, 1633–1635 (1963). Google Scholar
Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science284, 143–147 (1999). ArticleCAS Google Scholar
Richards, L. J., Kilpatrick, T. J. & Bartlett, P. F. De novo generation of neuronal cells from the adult mouse brain. Proc. Natl Acad. Sci. USA89, 8591–8595 (1992). CAS Google Scholar
da Silva, M. L., Chagastelles, P. C. & Nardi, N. B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci.119, 2204–2213 (2006). Google Scholar
Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell3, 301–313 (2008). CAS Google Scholar
Stevens, M. M. et al. In vivo engineering of organs: the bone bioreactor. Proc. Natl Acad. Sci. USA102, 11450–11455 (2005). CAS Google Scholar
Litinski, V. & Kim, L. Regenerative Medicine Industry Briefing (MaRS Venture Group, 2008). Google Scholar
Breitbach, M. et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood110, 1362–1369 (2007). CAS Google Scholar
Engler, A. J. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol.166, 877–887 (2004). CAS Google Scholar
Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science282, 1145–1147 (1998). CAS Google Scholar
Taylor, C. J. et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet366, 2019–2025 (2005). Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). ArticleCAS Google Scholar
Kim, J. B. et al. Oct4-induced pluripotency in adult neural stem cells. Cell136, 411–419 (2009). CAS Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007). ArticleCAS Google Scholar
Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448, 318–324 (2007). ArticleCAS Google Scholar
Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature458, 771–775 (2009). CAS Google Scholar
Nichols, S. A., Dirks, W., Pearse, J. S. & King, N. Early evolution of animal cell signaling and adhesion genes. Proc. Natl Acad. Sci. USA103, 12451–12456 (2006). CAS Google Scholar
Nose, A., Tsuji, K. & Takeichi, M. Localization of specificity determining sites in cadherin cell adhesion molecules. Cell61, 147–155 (1990). CAS Google Scholar
Takeichi, M., Inuzuka, H., Shimamura, K., Matsunaga, M. & Nose, A. Cadherin-mediated cell–cell adhesion and neurogenesis. Neurosci. Res. Suppl.13, S92–S96 (1990). CAS Google Scholar
de Bank, P. A., Kellam, B., Kendall, D. A. & Shakesheff, K. M. Surface engineering of living myoblasts via selective periodate oxidation. Biotechnol. Bioeng.81, 800–808 (2003). CAS Google Scholar
Urist, M. R. Bone: formation by autoinduction. Science150, 893–899 (1965). CAS Google Scholar
Damien, C. J. & Parsons, J. R. Bone graft and bone graft substitutes: a review of current technology and applications. J. Appl. Biomater.2, 187–208 (1991). CAS Google Scholar
Ott, H. C. et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nature Med.14, 213–221 (2008). CAS Google Scholar
Hollister, S. J. Porous scaffold design for tissue engineering. Nature Mater.4, 518–524 (2005). CAS Google Scholar
L'Heureux, N. et al. Technology insight: the evolution of tissue-engineered vascular grafts: from research to clinical practice. Nature Clin. Pract. Cardiovasc. Med.4, 389–395 (2007). Google Scholar
Butler, D. L. et al. Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J. Orthop. Res.26, 1–9 (2008). Google Scholar
Moutos, F. T., Freed, L. E. & Guilak, F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Mater.6, 162–167 (2007). CAS Google Scholar
Sahiner, N., Jha, A. K., Nguyen, D. & Jia, X. Fabrication and characterization of cross-linkable hydrogel particles based on hyaluronic acid: potential application in vocal fold regeneration. J. Biomater. Sci. Polym. E19, 223–243 (2008). CAS Google Scholar
Li, W. J., Mauck, R. L., Cooper, J. A., Yuan, X. N. & Tuan, R. S. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J. Biomech.40, 1686–1693 (2007). Google Scholar
Millon, L. E., Mohammadi, H. & Wan, W. K. Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications. J. Biomed. Mater. Res. B79, 305–311 (2006). CAS Google Scholar
Engelmayr, G. C. et al. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Mater.7, 1003–1010 (2008). CAS Google Scholar
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell126, 677–689 (2006). CAS Google Scholar
Pelham, R. J. & Wang, Y. l. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA94, 13661–13665 (1997). CAS Google Scholar
Curtis, A. S., Dalby, M. & Gadegaard, N. Cell signaling arising from nanotopography: implications for nanomedical devices. Nanomedicine1, 67–72 (2006). CAS Google Scholar
Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science310, 1135–1138 (2005). CAS Google Scholar
Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science294, 1708–1712 (2001). CAS Google Scholar
Stephens, L. E. et al. Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev.9, 1883–1895 (1995). CAS Google Scholar
George, E. L., Georges-Labouesse, E. N., Patel-King, R. S., Rayburn, H. & Hynes, R. O. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development119, 1079–1091 (1993). CAS Google Scholar
Kothapalli, D., Flowers, J., Xu, T., Pure, E. & Assoian, R. K. Differential activation of ERK and Rac mediates the proliferative and anti-proliferative effects of hyaluronan and CD44. J. Biol. Chem.283, 31823–31829 (2008). CAS Google Scholar
Serban, M. A. & Prestwich, G. D. Modular extracellular matrices: Solutions for the puzzle. Methods45, 93–98 (2008). CAS Google Scholar
Bonzani, I. C. et al. Synthesis of two-component injectable polyurethanes for bone tissue engineering. Biomaterials28, 423–433 (2007). CAS Google Scholar
Kim, K. & Fisher, J. P. Nanoparticle technology in bone tissue engineering. J. Drug Target.15, 241–252 (2007). CAS Google Scholar
Lendlein, A. & Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science296, 1673–1676 (2002). Google Scholar
Lee, J., Bae, Y. H., Sohn, Y. S. & Jeong, B. Thermogelling aqueous solutions of alternating multiblock copolymers of poly(L-lactic acid) and poly(ethylene glycol). Biomacromolecules7, 1729–1734 (2006). CAS Google Scholar
Baroli, B. Hydrogels for tissue engineering and delivery of tissue-inducing substances. J. Pharm. Sci.96, 2197–2223 (2007). CAS Google Scholar
Benoit, D. S. W., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Mater.7, 816–823 (2008). CAS Google Scholar
Schense, J. C., Bloch, J., Aebischer, P. & Hubbell, J. A. Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nature Biotech.18, 415–419 (2000). CAS Google Scholar
Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science303, 1352–1355 (2004). CAS Google Scholar
Underwood, P. A., Bennett, F. A., Kirkpatrick, A., Bean, P. A. & Moss, B. A. Evidence for the location of a binding sequence for the alpha 2 beta 1 integrin of endothelial cells, in the beta 1 subunit of laminin. Biochem. J.309, 765–771 (1995). CAS Google Scholar
Comisar, W. A., Kazmers, N. H., Mooney, D. J. & Linderman, J. J. Engineering RGD nanopatterned hydrogels to control preosteoblast behavior: A combined computational and experimental approach. Biomaterials28, 4409–4417 (2007). CAS Google Scholar
Benoit, D. S. W. & Anseth, K. S. The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials26, 5209–5220 (2005). CAS Google Scholar
Alsberg, E., Anderson, K. W., Albeiruti, A., Rowley, J. A. & Mooney, D. J. Engineering growing tissues. Proc. Natl Acad. Sci. USA99, 12025–12030 (2002). CAS Google Scholar
de Mel, A., Jell, G., Stevens, M. M. & Seifalian, A. M. Biofunctionalization of biomaterials for accelerated in situ endothelialization: A review. Biomacromolecules9, 2969–2979 (2008). CAS Google Scholar
Dunehoo, A. L. et al. Cell adhesion molecules for targeted drug delivery. J. Pharm. Sci.95, 1856–1872 (2006). CAS Google Scholar
Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA100, 5413–5418 (2003). CAS Google Scholar
Girotti, A. et al. Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes. J. Mater. Sci. Mater. Med.15, 479–484 (2004). CAS Google Scholar
Schenk, S. & Quaranta, V. Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell Biol.13, 366–375 (2003). CAS Google Scholar
Shaub, A. Unravelling the extracellular matrix. Nature Cell Biol.1, E173-E175 (1999). CAS Google Scholar
Hocking, D. C., Sottile, J. & Keown-Longo, P. J. Fibronectin's III-1 module contains a conformation-dependent binding site for the amino-terminal region of fibronectin. J. Biol. Chem.269, 19183–19187 (1994). CAS Google Scholar
Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol.179, 1311–1323 (2007). CAS Google Scholar
Polesskaya, A., Seale, P. & Rudnicki, M. A. Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell113, 841–852 (2003). CAS Google Scholar
Wang, Z. Z. et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nature Biotechnol.25, 317–318 (2007). CAS Google Scholar
Jiang, W. et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res.17, 333–344 (2007). CAS Google Scholar
Sumi, T., Tsuneyoshi, N., Nakatsuji, N. & Suemori, H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, activin/nodal and BMP signaling. Development135, 2969–2979 (2008). CAS Google Scholar
Hill, E., Boontheekul, T. & Mooney, D. J. Regulating activation of transplanted cells controls tissue regeneration. Proc. Natl Acad. Sci. USA103, 2494–2499 (2006). CAS Google Scholar
Hanson, J. A. et al. Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature455, 85–88 (2008). CAS Google Scholar
Richardson, T. P., Peters, M. C., Ennett, A. B. & Mooney, D. J. Polymeric system for dual growth factor delivery. Nature Biotechnol.19, 1029–1034 (2001). CAS Google Scholar
Sohier, J. et al. Dual release of proteins from porous polymeric scaffolds. J. Controlled Release111, 95–106 (2006). CAS Google Scholar
Liu, H. W., Chen, C. H., Tsai, C. L. & Hsiue, G. H. Targeted delivery system for juxtacrine signaling growth factor based on rhBMP-2-mediated carrier-protein conjugation. Bone39, 825–836 (2006). CAS Google Scholar
Alberti, K. et al. Functional immobilization of signaling proteins enables control of stem cell fate. Nature Methods5, 645–650 (2008). CAS Google Scholar
Klenkler, B. J. Characterization of EGF coupling to aminated silicone rubber surfaces. Biotechnol. Bioeng.95, 1158–1166 (2006). CAS Google Scholar
Mann, B. K., Schmedlen, R. H. & West, J. L. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells. Biomaterials22, 439–444 (2001). CAS Google Scholar
Backer, M. V., Patel, V., Jehning, B. T., Claffey, K. P. & Backer, J. M. Surface immobilization of active vascular endothelial growth factor via a cysteine-containing tag. Biomaterials27, 5452–5458 (2006). CAS Google Scholar
Zisch, A. H., Schenk, U., Schense, J. C., Sakiyama-Elbert, S. E. & Hubbell, J. A. Covalently conjugated VEGF-fibrin matrices for endothelialization. J. Controlled Release72, 101–113 (2001). CAS Google Scholar
Raman, R., Sasisekharan, V. & Sasisekharan, R. Structural insights into biological roles of protein–glycosaminoglycan interactions. Chem. Biol.12, 267–277 (2005). CAS Google Scholar
Rawat, M., Gama, C. I., Matson, J. B. & Hsieh-Wilson, L. C. Neuroactive chondroitin sulfate glycomimetics. J. Am. Chem. Soc.130, 2959–2961 (2008). CAS Google Scholar
Gama, C. I. et al. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nature Chem. Biol.2, 467–473 (2006). CAS Google Scholar
Pellegrini, L., Burke, D. F., von Delft, F., Mulloy, B. & Blundell, T. L. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature407, 1029–1034 (2000). CAS Google Scholar
Sakiyama-Elbert, S. E. & Hubbell, J. A. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J. Controlled Release65, 389–402 (2000). CAS Google Scholar
Zhang, L., Furst, E. M. & Kiick, K. L. Manipulation of hydrogel assembly and growth factor delivery via the use of peptide-polysaccharide interactions. J. Controlled Release114, 130–142 (2006). CAS Google Scholar
Singh, M., Berkland, C. & Detamore, M. S. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering. Tissue Eng. B14, 341–366 (2008). CAS Google Scholar
Lin, X., Takahashi, K., Liu, Y., Derrien, A. & Zamora, P. O. A synthetic, bioactive PDGF mimetic with binding to both α-PDGF and β-PDGF receptors. Growth Factors25, 87–93 (2007). CAS Google Scholar
Lin, X. et al. Synthetic peptide F2A4-K-NS mimics fibroblast growth factor-2 in vitro and is angiogenic in vivo. Int. J. Mol. Med.17, 833–839 (2006). CAS Google Scholar
Cambon, K. et al. A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J. Neurosci.24, 4197–4204 (2004). CAS Google Scholar
Nie, H. & Wang, C. H. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J. Controlled Release120, 111–121 (2007). CAS Google Scholar
Wrighton, N. C. et al. Increased potency of an erythropoietin peptide mimetic through covalent dimerization. Nature Biotechnol.15, 1261–1265 (1997). CAS Google Scholar
Domling, A., Beck, B., Baumbach, W. & Larbig, G. Towards erythropoietin mimicking small molecules. Bioorg. Med. Chem. Lett.17, 379–384 (2007). Google Scholar
Hwang, N. S., Varghese, S. & Elisseeff, J. Controlled differentiation of stem cells. Adv. Drug Deliv. Rev.60, 199–214 (2008). CAS Google Scholar
Hench, L. L. & Paschall, H. A. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J. Biomed. Mater. Res.7, 25–42 (1973). CAS Google Scholar
Xynos, I. D., Edgar, A. J., Buttery, L. D., Hench, L. L. & Polak, J. M. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J. Biomed. Mater. Res.55, 151–157 (2001). CAS Google Scholar
Barbucci, R. et al. Fibroblast cell behavior on bound and adsorbed fibronectin onto hyaluronan and sulfated hyaluronan substrates. Biomacromolecules6, 638–645 (2005). CAS Google Scholar
Freeman, I., Kedem, A. & Cohen, S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials29, 3260–3268 (2008). CAS Google Scholar
Rouet, V. et al. A synthetic glycosaminoglycan mimetic binds vascular endothelial growth factor and modulates angiogenesis. J. Biol. Chem.280, 32792–32800 (2005). CAS Google Scholar
Chaterji, S. & Gemeinhart, R. A. Enhanced osteoblast-like cell adhesion and proliferation using sulfonate-bearing polymeric scaffolds. J. Biomed. Mater. Res. A83, 990–998 (2007). Google Scholar
Guerrini, M. et al. Minimal heparin/heparan sulfate sequences for binding to fibroblast growth factor-1. Biochem. Biophys. Res. Commun.292, 222–230 (2002). CAS Google Scholar
Raman, R., Venkataraman, G., Ernst, S., Sasisekharan, V. & Sasisekharan, R. Structural specificity of heparin binding in the fibroblast growth factor family of proteins. Proc. Natl Acad. Sci. USA100, 2357–2362 (2003). CAS Google Scholar
Tully, S. E. et al. A chondroitin sulfate small molecule that stimulates neuronal growth. J. Am. Chem. Soc.126, 7736–7737 (2004). CAS Google Scholar
Lever, R. & Page, C. P. Novel drug development opportunities for heparin. Nature Rev. Drug Discov.1, 140–148 (2002). CAS Google Scholar
Sarrazin, S., Bonnaffe, D., Lubineau, A. & Lortat-Jacob, H. Heparan sulfate mimicry: a synthetic glycoconjugate that recognises the heparin binding domain of interferon-γ inhibits the cytokine activity. J. Biol. Chem.280, 37558–37564 (2005). CAS Google Scholar
Seeberger, P. H. & Werz, D. B. Synthesis and medical applications of oligosaccharides. Nature446, 1046–1051 (2007). CAS Google Scholar
Adibekian, A. et al. De novo synthesis of uronic acid building blocks for assembly of heparin oligosaccharides. Chem. Eur. J.13, 4510–4522 (2007). CAS Google Scholar
Tatai, J., Osztrovszky, G., Kajtár-Peredy, M. & Fügedi, P. An efficient synthesis of L-idose and L-iduronic acid thioglycosides and their use for the synthesis of heparin oligosaccharides. Carbohydr. Res.343, 596–606 (2008). CAS Google Scholar
Polat, T. & Wong, C. H. Anomeric reactivity-based one-pot synthesis of heparin-like oligosaccharides. J. Am. Chem. Soc.129, 12795–12800 (2007). CAS Google Scholar
Zhang, Z. et al. Solution structures of chemoenzymatically synthesized heparin and its precursors. J. Am. Chem. Soc.130, 12998–13007 (2008). CAS Google Scholar
Wakao, M. et al. Sugar chips immobilized with synthetic sulfated disaccharides of heparin/heparan sulfate partial structure. Bioorg. Med. Chem. Lett.18, 2499–2504 (2008). CAS Google Scholar
Woo, K. M., Chen, V. J. & Ma, P. X. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J. Biomed. Mater. Res. A67, 531–537 (2003). Google Scholar
Vogler, E. A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci.74, 69–117 (1998). CAS Google Scholar
Keselowsky, B. G., Collard, D. M. & García, A. J. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl Acad. Sci. USA102, 5953–5957 (2005). CAS Google Scholar
Anderson, D. G., Putnam, D., Lavik, E. B., Mahmood, T. A. & Langer, R. Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction. Biomaterials26, 4892–4897 (2005). CAS Google Scholar
Flaim, C. J., Chien, S. & Bhatia, S. N. An extracellular matrix microarray for probing cellular differentiation. Nature Methods2, 119–125 (2005). CAS Google Scholar
Anderson, D. G., Levenberg, S. & Langer, R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nature Biotechnol.22, 863–866 (2004). CAS Google Scholar
Chen, J. L., Chu, B. & Hsiao, B. S. Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. J. Biomed. Mater. Res. A79, 307–317 (2006). Google Scholar
Song, J., Malathong, V. & Bertozzi, C. R. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. J. Am. Chem. Soc.127, 3366–3372 (2005). CAS Google Scholar
Robey, P. G. in Principles of Bone Biology (eds Bilezikian, J. P., Raisz, L. G. & Rodan, G. A.) 225–237 (Academic, 2002). Google Scholar
Nuttelman, C. R., Benoit, D. S. W., Tripodi, M. C. & Anseth, K. S. The effect of ethylene glycol methacrylate phosphate in PEG hydrogels on mineralization and viability of encapsulated hMSCs. Biomaterials27, 1377–1386 (2006). CAS Google Scholar
von Degenfeld, G. et al. Microenvironmental VEGF distribution is critical for stable and functional vessel growth in ischemia. FASEB J.20, 2657–2659 (2006). CAS Google Scholar
Hao, X. et al. Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res.75, 178–185 (2007). CAS Google Scholar
Trentin, D., Hall, H., Wechsler, S. & Hubbell, J. A. Peptide-matrix-mediated gene transfer of an oxygen-insensitive hypoxia-inducible factor-1α variant for local induction of angiogenesis. Proc. Natl Acad. Sci. USA103, 2506–2511 (2006). CAS Google Scholar
Saunders, W. B. et al. Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J. Cell Biol.175, 179–191 (2006). CAS Google Scholar
Hunter, G. K. & Goldberg, H. A. Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Biochem. J.302, 175–179 (1994). CAS Google Scholar
Tye, C. E. et al. Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein. J. Biol. Chem.278, 7949–7955 (2003). CAS Google Scholar
de Paz, J. L., Noti, C., Böhm, F., Werner, S. & Seeberger, P. H. Potentiation of fibroblast growth factor activity by synthetic heparin oligosaccharide glycodendrimers. Chem. Biol.14, 879–887 (2007). CAS Google Scholar
Lu, H. H. & Jiang, J. Interface tissue engineering and the formulation of multiple-tissue systems. Adv. Biochem. Eng. Biotechnol.102, 91–111 (2006). CAS Google Scholar
Schaefer, D. et al. In vitro generation of osteochondral composites. Biomaterials21, 2599–2606 (2000). CAS Google Scholar
O'Shea, T. M. & Miao, X. Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng. B14, 447–464 (2008). CAS Google Scholar
Schek, R. M., Taboas, J. M., Segvich, S. J., Hollister, S. J. & Krebsbach, P. H. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng.10, 1376–1385 (2004). CAS Google Scholar
Tampieri, A. et al. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials29, 3539–3546 (2008). CAS Google Scholar
Kim, T.-K. et al. Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr. Cartilage11, 653–664 (2003). Google Scholar
Spalazzi, J. P. et al. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J. Biomed. Mater. Res. A86, 1–12 (2008). Google Scholar
Phillips, J. E., Burns, K. L., Le Doux, J. M., Guldberg, R. E. & García, A. J. Engineering graded tissue interfaces. Proc. Natl Acad. Sci. USA105, 12170–12175 (2008). CAS Google Scholar
Cooper, J. A. et al. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc. Natl Acad. Sci. USA104, 3049–3054 (2007). CAS Google Scholar
Brey, E. M., Uriel, S., Greisler, H. P. & McIntire, L. V. Therapeutic neovascularization: contributions from bioengineering. Tissue Eng.11, 567–584 (2005). CAS Google Scholar
Koike, N. et al. Tissue engineering: Creation of long-lasting blood vessels. Nature428, 138–139 (2004). CAS Google Scholar
Fischbach, C. & Mooney, D. J. Polymers for pro- and anti-angiogenic therapy. Biomaterials28, 2069–2076 (2007). CAS Google Scholar
Ehrbar, M. et al. The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials29, 1720–1729 (2008). CAS Google Scholar
Gao, J. & Messner, K. Quantitative comparison of soft tissue-bone interface at chondral ligament insertions in the rabbit knee joint. J. Anat.188, 367–373 (1996). Google Scholar