Complexity in biomaterials for tissue engineering (original) (raw)

References

  1. Viola, J., Lal, B. & Grad, O. The Emergence of Tissue Engineering as a Research Field (2003); available at <http://www.nsf.gov/pubs/2004/nsf0450/start.htm>.
    Google Scholar
  2. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J. & Retik, A. B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367, 1241–1246 (2006).
    Google Scholar
  3. Macchiarini, P. et al. Clinical transplantation of a tissue-engineered airway. Lancet 372, 2023–2030 (2008).
    Google Scholar
  4. Lysaght, M. J., Jaklenec, A. & Deweerd, E. Great expectations: Private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics. Tissue Eng. Part A 14, 305–315 (2008).
    Google Scholar
  5. US Department of Health and Human Services. 2020: A New Vision — A Future for Regenerative Medicine (2006); available at <http://www.hhs.gov/reference/newfuture.shtml>.
  6. Bouchie, A. Tissue engineering firms go under. Nature Biotechnol. 20, 1178–1179 (2002).
    CAS Google Scholar
  7. Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66 (1997).
    CAS Google Scholar
  8. Ford, C. E., Hamerton, J. L., Barnes, D. W. & Loutit, J. F. Cytological identification of radiation-chimaeras. Nature 177, 452–454 (1956).
    CAS Google Scholar
  9. Mathe, G., Amiel, J. L., Schwarzenberg, L., Cattan, A. & Schneider, M. Haematopoietic chimera in man after allogenic (homologous) bone-marrow transplantation. (Control of the secondary syndrome. Specific tolerance due to the chimerism). Br. Med. J. 5373, 1633–1635 (1963).
    Google Scholar
  10. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).
    Article CAS Google Scholar
  11. Richards, L. J., Kilpatrick, T. J. & Bartlett, P. F. De novo generation of neuronal cells from the adult mouse brain. Proc. Natl Acad. Sci. USA 89, 8591–8595 (1992).
    CAS Google Scholar
  12. da Silva, M. L., Chagastelles, P. C. & Nardi, N. B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204–2213 (2006).
    Google Scholar
  13. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).
    CAS Google Scholar
  14. Stevens, M. M. et al. In vivo engineering of organs: the bone bioreactor. Proc. Natl Acad. Sci. USA 102, 11450–11455 (2005).
    CAS Google Scholar
  15. Litinski, V. & Kim, L. Regenerative Medicine Industry Briefing (MaRS Venture Group, 2008).
    Google Scholar
  16. Breitbach, M. et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110, 1362–1369 (2007).
    CAS Google Scholar
  17. Engler, A. J. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004).
    CAS Google Scholar
  18. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).
    CAS Google Scholar
  19. Taylor, C. J. et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366, 2019–2025 (2005).
    Google Scholar
  20. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).
    Article CAS Google Scholar
  21. Kim, J. B. et al. Oct4-induced pluripotency in adult neural stem cells. Cell 136, 411–419 (2009).
    CAS Google Scholar
  22. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).
    Article CAS Google Scholar
  23. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).
    Article CAS Google Scholar
  24. Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–775 (2009).
    CAS Google Scholar
  25. Nichols, S. A., Dirks, W., Pearse, J. S. & King, N. Early evolution of animal cell signaling and adhesion genes. Proc. Natl Acad. Sci. USA 103, 12451–12456 (2006).
    CAS Google Scholar
  26. Nose, A., Tsuji, K. & Takeichi, M. Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61, 147–155 (1990).
    CAS Google Scholar
  27. Takeichi, M., Inuzuka, H., Shimamura, K., Matsunaga, M. & Nose, A. Cadherin-mediated cell–cell adhesion and neurogenesis. Neurosci. Res. Suppl. 13, S92–S96 (1990).
    CAS Google Scholar
  28. de Bank, P. A., Kellam, B., Kendall, D. A. & Shakesheff, K. M. Surface engineering of living myoblasts via selective periodate oxidation. Biotechnol. Bioeng. 81, 800–808 (2003).
    CAS Google Scholar
  29. Urist, M. R. Bone: formation by autoinduction. Science 150, 893–899 (1965).
    CAS Google Scholar
  30. Damien, C. J. & Parsons, J. R. Bone graft and bone graft substitutes: a review of current technology and applications. J. Appl. Biomater. 2, 187–208 (1991).
    CAS Google Scholar
  31. Ott, H. C. et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nature Med. 14, 213–221 (2008).
    CAS Google Scholar
  32. Hollister, S. J. Porous scaffold design for tissue engineering. Nature Mater. 4, 518–524 (2005).
    CAS Google Scholar
  33. L'Heureux, N. et al. Technology insight: the evolution of tissue-engineered vascular grafts: from research to clinical practice. Nature Clin. Pract. Cardiovasc. Med. 4, 389–395 (2007).
    Google Scholar
  34. Butler, D. L. et al. Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J. Orthop. Res. 26, 1–9 (2008).
    Google Scholar
  35. Moutos, F. T., Freed, L. E. & Guilak, F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Mater. 6, 162–167 (2007).
    CAS Google Scholar
  36. Sahiner, N., Jha, A. K., Nguyen, D. & Jia, X. Fabrication and characterization of cross-linkable hydrogel particles based on hyaluronic acid: potential application in vocal fold regeneration. J. Biomater. Sci. Polym. E 19, 223–243 (2008).
    CAS Google Scholar
  37. Li, W. J., Mauck, R. L., Cooper, J. A., Yuan, X. N. & Tuan, R. S. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J. Biomech. 40, 1686–1693 (2007).
    Google Scholar
  38. Millon, L. E., Mohammadi, H. & Wan, W. K. Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications. J. Biomed. Mater. Res. B 79, 305–311 (2006).
    CAS Google Scholar
  39. Engelmayr, G. C. et al. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Mater. 7, 1003–1010 (2008).
    CAS Google Scholar
  40. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).
    CAS Google Scholar
  41. Pelham, R. J. & Wang, Y. l. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).
    CAS Google Scholar
  42. Curtis, A. S., Dalby, M. & Gadegaard, N. Cell signaling arising from nanotopography: implications for nanomedical devices. Nanomedicine 1, 67–72 (2006).
    CAS Google Scholar
  43. Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).
    CAS Google Scholar
  44. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).
    CAS Google Scholar
  45. Stephens, L. E. et al. Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev. 9, 1883–1895 (1995).
    CAS Google Scholar
  46. George, E. L., Georges-Labouesse, E. N., Patel-King, R. S., Rayburn, H. & Hynes, R. O. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119, 1079–1091 (1993).
    CAS Google Scholar
  47. Kothapalli, D., Flowers, J., Xu, T., Pure, E. & Assoian, R. K. Differential activation of ERK and Rac mediates the proliferative and anti-proliferative effects of hyaluronan and CD44. J. Biol. Chem. 283, 31823–31829 (2008).
    CAS Google Scholar
  48. Serban, M. A. & Prestwich, G. D. Modular extracellular matrices: Solutions for the puzzle. Methods 45, 93–98 (2008).
    CAS Google Scholar
  49. Bonzani, I. C. et al. Synthesis of two-component injectable polyurethanes for bone tissue engineering. Biomaterials 28, 423–433 (2007).
    CAS Google Scholar
  50. Kim, K. & Fisher, J. P. Nanoparticle technology in bone tissue engineering. J. Drug Target. 15, 241–252 (2007).
    CAS Google Scholar
  51. Lendlein, A. & Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002).
    Google Scholar
  52. Lee, J., Bae, Y. H., Sohn, Y. S. & Jeong, B. Thermogelling aqueous solutions of alternating multiblock copolymers of poly(L-lactic acid) and poly(ethylene glycol). Biomacromolecules 7, 1729–1734 (2006).
    CAS Google Scholar
  53. Baroli, B. Hydrogels for tissue engineering and delivery of tissue-inducing substances. J. Pharm. Sci. 96, 2197–2223 (2007).
    CAS Google Scholar
  54. Benoit, D. S. W., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Mater. 7, 816–823 (2008).
    CAS Google Scholar
  55. Schense, J. C., Bloch, J., Aebischer, P. & Hubbell, J. A. Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nature Biotech. 18, 415–419 (2000).
    CAS Google Scholar
  56. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).
    CAS Google Scholar
  57. Underwood, P. A., Bennett, F. A., Kirkpatrick, A., Bean, P. A. & Moss, B. A. Evidence for the location of a binding sequence for the alpha 2 beta 1 integrin of endothelial cells, in the beta 1 subunit of laminin. Biochem. J. 309, 765–771 (1995).
    CAS Google Scholar
  58. Comisar, W. A., Kazmers, N. H., Mooney, D. J. & Linderman, J. J. Engineering RGD nanopatterned hydrogels to control preosteoblast behavior: A combined computational and experimental approach. Biomaterials 28, 4409–4417 (2007).
    CAS Google Scholar
  59. Benoit, D. S. W. & Anseth, K. S. The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials 26, 5209–5220 (2005).
    CAS Google Scholar
  60. Alsberg, E., Anderson, K. W., Albeiruti, A., Rowley, J. A. & Mooney, D. J. Engineering growing tissues. Proc. Natl Acad. Sci. USA 99, 12025–12030 (2002).
    CAS Google Scholar
  61. de Mel, A., Jell, G., Stevens, M. M. & Seifalian, A. M. Biofunctionalization of biomaterials for accelerated in situ endothelialization: A review. Biomacromolecules 9, 2969–2979 (2008).
    CAS Google Scholar
  62. Dunehoo, A. L. et al. Cell adhesion molecules for targeted drug delivery. J. Pharm. Sci. 95, 1856–1872 (2006).
    CAS Google Scholar
  63. Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).
    CAS Google Scholar
  64. Girotti, A. et al. Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes. J. Mater. Sci. Mater. Med. 15, 479–484 (2004).
    CAS Google Scholar
  65. Schenk, S. & Quaranta, V. Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell Biol. 13, 366–375 (2003).
    CAS Google Scholar
  66. Shaub, A. Unravelling the extracellular matrix. Nature Cell Biol. 1, E173-E175 (1999).
    CAS Google Scholar
  67. Hocking, D. C., Sottile, J. & Keown-Longo, P. J. Fibronectin's III-1 module contains a conformation-dependent binding site for the amino-terminal region of fibronectin. J. Biol. Chem. 269, 19183–19187 (1994).
    CAS Google Scholar
  68. Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).
    CAS Google Scholar
  69. Polesskaya, A., Seale, P. & Rudnicki, M. A. Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113, 841–852 (2003).
    CAS Google Scholar
  70. Wang, Z. Z. et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nature Biotechnol. 25, 317–318 (2007).
    CAS Google Scholar
  71. Jiang, W. et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res. 17, 333–344 (2007).
    CAS Google Scholar
  72. Sumi, T., Tsuneyoshi, N., Nakatsuji, N. & Suemori, H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, activin/nodal and BMP signaling. Development 135, 2969–2979 (2008).
    CAS Google Scholar
  73. Hill, E., Boontheekul, T. & Mooney, D. J. Regulating activation of transplanted cells controls tissue regeneration. Proc. Natl Acad. Sci. USA 103, 2494–2499 (2006).
    CAS Google Scholar
  74. Hanson, J. A. et al. Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature 455, 85–88 (2008).
    CAS Google Scholar
  75. Richardson, T. P., Peters, M. C., Ennett, A. B. & Mooney, D. J. Polymeric system for dual growth factor delivery. Nature Biotechnol. 19, 1029–1034 (2001).
    CAS Google Scholar
  76. Sohier, J. et al. Dual release of proteins from porous polymeric scaffolds. J. Controlled Release 111, 95–106 (2006).
    CAS Google Scholar
  77. Liu, H. W., Chen, C. H., Tsai, C. L. & Hsiue, G. H. Targeted delivery system for juxtacrine signaling growth factor based on rhBMP-2-mediated carrier-protein conjugation. Bone 39, 825–836 (2006).
    CAS Google Scholar
  78. Alberti, K. et al. Functional immobilization of signaling proteins enables control of stem cell fate. Nature Methods 5, 645–650 (2008).
    CAS Google Scholar
  79. Klenkler, B. J. Characterization of EGF coupling to aminated silicone rubber surfaces. Biotechnol. Bioeng. 95, 1158–1166 (2006).
    CAS Google Scholar
  80. Mann, B. K., Schmedlen, R. H. & West, J. L. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 22, 439–444 (2001).
    CAS Google Scholar
  81. Backer, M. V., Patel, V., Jehning, B. T., Claffey, K. P. & Backer, J. M. Surface immobilization of active vascular endothelial growth factor via a cysteine-containing tag. Biomaterials 27, 5452–5458 (2006).
    CAS Google Scholar
  82. Zisch, A. H., Schenk, U., Schense, J. C., Sakiyama-Elbert, S. E. & Hubbell, J. A. Covalently conjugated VEGF-fibrin matrices for endothelialization. J. Controlled Release 72, 101–113 (2001).
    CAS Google Scholar
  83. Raman, R., Sasisekharan, V. & Sasisekharan, R. Structural insights into biological roles of protein–glycosaminoglycan interactions. Chem. Biol. 12, 267–277 (2005).
    CAS Google Scholar
  84. Rawat, M., Gama, C. I., Matson, J. B. & Hsieh-Wilson, L. C. Neuroactive chondroitin sulfate glycomimetics. J. Am. Chem. Soc. 130, 2959–2961 (2008).
    CAS Google Scholar
  85. Gama, C. I. et al. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nature Chem. Biol. 2, 467–473 (2006).
    CAS Google Scholar
  86. Pellegrini, L., Burke, D. F., von Delft, F., Mulloy, B. & Blundell, T. L. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407, 1029–1034 (2000).
    CAS Google Scholar
  87. Sakiyama-Elbert, S. E. & Hubbell, J. A. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J. Controlled Release 65, 389–402 (2000).
    CAS Google Scholar
  88. Zhang, L., Furst, E. M. & Kiick, K. L. Manipulation of hydrogel assembly and growth factor delivery via the use of peptide-polysaccharide interactions. J. Controlled Release 114, 130–142 (2006).
    CAS Google Scholar
  89. Singh, M., Berkland, C. & Detamore, M. S. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering. Tissue Eng. B 14, 341–366 (2008).
    CAS Google Scholar
  90. Lin, X., Takahashi, K., Liu, Y., Derrien, A. & Zamora, P. O. A synthetic, bioactive PDGF mimetic with binding to both α-PDGF and β-PDGF receptors. Growth Factors 25, 87–93 (2007).
    CAS Google Scholar
  91. Lin, X. et al. Synthetic peptide F2A4-K-NS mimics fibroblast growth factor-2 in vitro and is angiogenic in vivo. Int. J. Mol. Med. 17, 833–839 (2006).
    CAS Google Scholar
  92. Cambon, K. et al. A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J. Neurosci. 24, 4197–4204 (2004).
    CAS Google Scholar
  93. Nie, H. & Wang, C. H. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J. Controlled Release 120, 111–121 (2007).
    CAS Google Scholar
  94. Wrighton, N. C. et al. Increased potency of an erythropoietin peptide mimetic through covalent dimerization. Nature Biotechnol. 15, 1261–1265 (1997).
    CAS Google Scholar
  95. Domling, A., Beck, B., Baumbach, W. & Larbig, G. Towards erythropoietin mimicking small molecules. Bioorg. Med. Chem. Lett. 17, 379–384 (2007).
    Google Scholar
  96. Hwang, N. S., Varghese, S. & Elisseeff, J. Controlled differentiation of stem cells. Adv. Drug Deliv. Rev. 60, 199–214 (2008).
    CAS Google Scholar
  97. Hench, L. L. & Paschall, H. A. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J. Biomed. Mater. Res. 7, 25–42 (1973).
    CAS Google Scholar
  98. Xynos, I. D., Edgar, A. J., Buttery, L. D., Hench, L. L. & Polak, J. M. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J. Biomed. Mater. Res. 55, 151–157 (2001).
    CAS Google Scholar
  99. Barbucci, R. et al. Fibroblast cell behavior on bound and adsorbed fibronectin onto hyaluronan and sulfated hyaluronan substrates. Biomacromolecules 6, 638–645 (2005).
    CAS Google Scholar
  100. Freeman, I., Kedem, A. & Cohen, S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 29, 3260–3268 (2008).
    CAS Google Scholar
  101. Rouet, V. et al. A synthetic glycosaminoglycan mimetic binds vascular endothelial growth factor and modulates angiogenesis. J. Biol. Chem. 280, 32792–32800 (2005).
    CAS Google Scholar
  102. Chaterji, S. & Gemeinhart, R. A. Enhanced osteoblast-like cell adhesion and proliferation using sulfonate-bearing polymeric scaffolds. J. Biomed. Mater. Res. A 83, 990–998 (2007).
    Google Scholar
  103. Guerrini, M. et al. Minimal heparin/heparan sulfate sequences for binding to fibroblast growth factor-1. Biochem. Biophys. Res. Commun. 292, 222–230 (2002).
    CAS Google Scholar
  104. Raman, R., Venkataraman, G., Ernst, S., Sasisekharan, V. & Sasisekharan, R. Structural specificity of heparin binding in the fibroblast growth factor family of proteins. Proc. Natl Acad. Sci. USA 100, 2357–2362 (2003).
    CAS Google Scholar
  105. Tully, S. E. et al. A chondroitin sulfate small molecule that stimulates neuronal growth. J. Am. Chem. Soc. 126, 7736–7737 (2004).
    CAS Google Scholar
  106. Lever, R. & Page, C. P. Novel drug development opportunities for heparin. Nature Rev. Drug Discov. 1, 140–148 (2002).
    CAS Google Scholar
  107. Sarrazin, S., Bonnaffe, D., Lubineau, A. & Lortat-Jacob, H. Heparan sulfate mimicry: a synthetic glycoconjugate that recognises the heparin binding domain of interferon-γ inhibits the cytokine activity. J. Biol. Chem. 280, 37558–37564 (2005).
    CAS Google Scholar
  108. Seeberger, P. H. & Werz, D. B. Synthesis and medical applications of oligosaccharides. Nature 446, 1046–1051 (2007).
    CAS Google Scholar
  109. Adibekian, A. et al. De novo synthesis of uronic acid building blocks for assembly of heparin oligosaccharides. Chem. Eur. J. 13, 4510–4522 (2007).
    CAS Google Scholar
  110. Tatai, J., Osztrovszky, G., Kajtár-Peredy, M. & Fügedi, P. An efficient synthesis of L-idose and L-iduronic acid thioglycosides and their use for the synthesis of heparin oligosaccharides. Carbohydr. Res. 343, 596–606 (2008).
    CAS Google Scholar
  111. Polat, T. & Wong, C. H. Anomeric reactivity-based one-pot synthesis of heparin-like oligosaccharides. J. Am. Chem. Soc. 129, 12795–12800 (2007).
    CAS Google Scholar
  112. Zhang, Z. et al. Solution structures of chemoenzymatically synthesized heparin and its precursors. J. Am. Chem. Soc. 130, 12998–13007 (2008).
    CAS Google Scholar
  113. Wakao, M. et al. Sugar chips immobilized with synthetic sulfated disaccharides of heparin/heparan sulfate partial structure. Bioorg. Med. Chem. Lett. 18, 2499–2504 (2008).
    CAS Google Scholar
  114. Woo, K. M., Chen, V. J. & Ma, P. X. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J. Biomed. Mater. Res. A 67, 531–537 (2003).
    Google Scholar
  115. Vogler, E. A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci. 74, 69–117 (1998).
    CAS Google Scholar
  116. Keselowsky, B. G., Collard, D. M. & García, A. J. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl Acad. Sci. USA 102, 5953–5957 (2005).
    CAS Google Scholar
  117. Anderson, D. G., Putnam, D., Lavik, E. B., Mahmood, T. A. & Langer, R. Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction. Biomaterials 26, 4892–4897 (2005).
    CAS Google Scholar
  118. Flaim, C. J., Chien, S. & Bhatia, S. N. An extracellular matrix microarray for probing cellular differentiation. Nature Methods 2, 119–125 (2005).
    CAS Google Scholar
  119. Anderson, D. G., Levenberg, S. & Langer, R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nature Biotechnol. 22, 863–866 (2004).
    CAS Google Scholar
  120. Chen, J. L., Chu, B. & Hsiao, B. S. Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. J. Biomed. Mater. Res. A 79, 307–317 (2006).
    Google Scholar
  121. Song, J., Malathong, V. & Bertozzi, C. R. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. J. Am. Chem. Soc. 127, 3366–3372 (2005).
    CAS Google Scholar
  122. Robey, P. G. in Principles of Bone Biology (eds Bilezikian, J. P., Raisz, L. G. & Rodan, G. A.) 225–237 (Academic, 2002).
    Google Scholar
  123. Nuttelman, C. R., Benoit, D. S. W., Tripodi, M. C. & Anseth, K. S. The effect of ethylene glycol methacrylate phosphate in PEG hydrogels on mineralization and viability of encapsulated hMSCs. Biomaterials 27, 1377–1386 (2006).
    CAS Google Scholar
  124. von Degenfeld, G. et al. Microenvironmental VEGF distribution is critical for stable and functional vessel growth in ischemia. FASEB J. 20, 2657–2659 (2006).
    CAS Google Scholar
  125. Hao, X. et al. Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 75, 178–185 (2007).
    CAS Google Scholar
  126. Trentin, D., Hall, H., Wechsler, S. & Hubbell, J. A. Peptide-matrix-mediated gene transfer of an oxygen-insensitive hypoxia-inducible factor-1α variant for local induction of angiogenesis. Proc. Natl Acad. Sci. USA 103, 2506–2511 (2006).
    CAS Google Scholar
  127. Saunders, W. B. et al. Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J. Cell Biol. 175, 179–191 (2006).
    CAS Google Scholar
  128. Hunter, G. K. & Goldberg, H. A. Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Biochem. J. 302, 175–179 (1994).
    CAS Google Scholar
  129. Tye, C. E. et al. Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein. J. Biol. Chem. 278, 7949–7955 (2003).
    CAS Google Scholar
  130. de Paz, J. L., Noti, C., Böhm, F., Werner, S. & Seeberger, P. H. Potentiation of fibroblast growth factor activity by synthetic heparin oligosaccharide glycodendrimers. Chem. Biol. 14, 879–887 (2007).
    CAS Google Scholar
  131. Lu, H. H. & Jiang, J. Interface tissue engineering and the formulation of multiple-tissue systems. Adv. Biochem. Eng. Biotechnol. 102, 91–111 (2006).
    CAS Google Scholar
  132. Schaefer, D. et al. In vitro generation of osteochondral composites. Biomaterials 21, 2599–2606 (2000).
    CAS Google Scholar
  133. O'Shea, T. M. & Miao, X. Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng. B 14, 447–464 (2008).
    CAS Google Scholar
  134. Schek, R. M., Taboas, J. M., Segvich, S. J., Hollister, S. J. & Krebsbach, P. H. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng. 10, 1376–1385 (2004).
    CAS Google Scholar
  135. Tampieri, A. et al. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 29, 3539–3546 (2008).
    CAS Google Scholar
  136. Kim, T.-K. et al. Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr. Cartilage 11, 653–664 (2003).
    Google Scholar
  137. Spalazzi, J. P. et al. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J. Biomed. Mater. Res. A 86, 1–12 (2008).
    Google Scholar
  138. Phillips, J. E., Burns, K. L., Le Doux, J. M., Guldberg, R. E. & García, A. J. Engineering graded tissue interfaces. Proc. Natl Acad. Sci. USA 105, 12170–12175 (2008).
    CAS Google Scholar
  139. Cooper, J. A. et al. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc. Natl Acad. Sci. USA 104, 3049–3054 (2007).
    CAS Google Scholar
  140. Brey, E. M., Uriel, S., Greisler, H. P. & McIntire, L. V. Therapeutic neovascularization: contributions from bioengineering. Tissue Eng. 11, 567–584 (2005).
    CAS Google Scholar
  141. Koike, N. et al. Tissue engineering: Creation of long-lasting blood vessels. Nature 428, 138–139 (2004).
    CAS Google Scholar
  142. Fischbach, C. & Mooney, D. J. Polymers for pro- and anti-angiogenic therapy. Biomaterials 28, 2069–2076 (2007).
    CAS Google Scholar
  143. Ehrbar, M. et al. The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials 29, 1720–1729 (2008).
    CAS Google Scholar
  144. Gao, J. & Messner, K. Quantitative comparison of soft tissue-bone interface at chondral ligament insertions in the rabbit knee joint. J. Anat. 188, 367–373 (1996).
    Google Scholar

Download references