Electronic transport in polycrystalline graphene (original) (raw)
References
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater.6, 183–191 (2007). CAS Google Scholar
Katsnelson, M. I. Graphene: Carbon in two dimensions. Mater. Today10, 20–27 (2007). ArticleCAS Google Scholar
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys.81, 109–162 (2009). CAS Google Scholar
Albrecht, T. R., Mizes, H. A., Nogami, J., Park, S-i. & Quate, C. F. Observation of tilt boundaries in graphite by scanning tunneling microscopy and associated multiple tip effects. Appl. Phys. Lett.52, 362–364 (1988). ArticleCAS Google Scholar
Clemmer, C. R. & Beebe, T. P. Jr Graphite: A mimic for DNA and other biomolecules in scanning tunneling microscope studies. Science251, 640–642 (1991). ArticleCAS Google Scholar
Heckl, W. M. & Binnig, G. Domain walls on graphite mimic DNA. Ultramicroscopy42, 1073–1078 (1992). Article Google Scholar
C˘ervenka, J. & Flipse, C. F. J. Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects. Phys. Rev. B79, 195429 (2009). Article Google Scholar
C˘ervenka, J., Katsnelson, M. I. & Flipse, C. F. J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nature Phys.5, 840–844 (2009). Article Google Scholar
Coraux, J. et al. Growth of graphene on Ir(111). New J. Phys.11, 023006 (2009). Article Google Scholar
Miller, D. L. et al. Observing the quantization of zero mass carriers in graphene. Science324, 924–927 (2009). ArticleCAS Google Scholar
Loginova, E., Nie, S., Thurmer, K., Bartelt, N. C. & McCarty, K. F. Defects of graphene on Ir(111): Rotational domains and ridges. Phys. Rev. B80, 085430 (2009). Article Google Scholar
Park, H. J., Meyer, J., Roth, S. & Skákalová, V. Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon48, 1088–1094 (2010). ArticleCAS Google Scholar
Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I. I. & Batzill, M. An extended defect in graphene as a metallic wire. Nature Nanotech.5, 326–329 (2010). ArticleCAS Google Scholar
Sutton, A. P. & Balluffi, R. W. Interfaces in Crystalline Materials (Clarendon Press, 1995). Google Scholar
Read, W. T. & Shockley, W. Dislocation models of crystal grain boundaries. Phys. Rev.78, 275–289 (1950). ArticleCAS Google Scholar
Yazyev, O. V. & Louie, S. G. Topological defects in graphene: Dislocations and grain boundaries. Phys. Rev. B81, 195420 (2010). Article Google Scholar
White, C. T. & Mintmire, J. W. Density of states reflects diameter in nanotubes. Nature394, 29–30 (1998). ArticleCAS Google Scholar
Mintmire, J. W. & White, C. T. Universal density of states for carbon nanotubes. Phys. Rev. Lett.81, 2506–2509 (1998). ArticleCAS Google Scholar
Carraro, C. & Nelson, D. R. Grain-boundary buckling and spin-glass models of disorder in membranes. Phys. Rev. E48, 3082–3090 (1993). ArticleCAS Google Scholar
Simonis, P. et al. STM study of a grain boundary in graphite. Surf. Sci.511, 319–322 (2002). ArticleCAS Google Scholar
Liu, Y. & Yakobson, B. I. Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett.10, 2178–2183 (2010). ArticleCAS Google Scholar
Koskinen, P., Malola, S. & Häkkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett.101, 115502 (2008). Article Google Scholar
Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys.2, 620–625 (2006). ArticleCAS Google Scholar
Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Phys.5, 222–226 (2009). ArticleCAS Google Scholar
Stander, N., Huard, B. & Goldhaber-Gordon, D. Evidence for Klein tunneling in graphene p_–_n junctions. Phys. Rev. Lett.102, 026807 (2009). ArticleCAS Google Scholar
Xia, F., Farmer, D. B., Lin, Y-M. & Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett.10, 715–718 (2010). ArticleCAS Google Scholar
Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter14, 2745–2779 (2002). ArticleCAS Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.77, 3865–3868 (1996). ArticleCAS Google Scholar
Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B43, 1993–2006 (1991). ArticleCAS Google Scholar
Brandbyge, M., Mozos, J-L., Ordejón, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B65, 165401 (2002). Article Google Scholar