Electronic transport in polycrystalline graphene (original) (raw)

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).
    CAS Google Scholar
  2. Katsnelson, M. I. Graphene: Carbon in two dimensions. Mater. Today 10, 20–27 (2007).
    Article CAS Google Scholar
  3. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
    CAS Google Scholar
  4. Albrecht, T. R., Mizes, H. A., Nogami, J., Park, S-i. & Quate, C. F. Observation of tilt boundaries in graphite by scanning tunneling microscopy and associated multiple tip effects. Appl. Phys. Lett. 52, 362–364 (1988).
    Article CAS Google Scholar
  5. Clemmer, C. R. & Beebe, T. P. Jr Graphite: A mimic for DNA and other biomolecules in scanning tunneling microscope studies. Science 251, 640–642 (1991).
    Article CAS Google Scholar
  6. Heckl, W. M. & Binnig, G. Domain walls on graphite mimic DNA. Ultramicroscopy 42, 1073–1078 (1992).
    Article Google Scholar
  7. C˘ervenka, J. & Flipse, C. F. J. Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects. Phys. Rev. B 79, 195429 (2009).
    Article Google Scholar
  8. C˘ervenka, J., Katsnelson, M. I. & Flipse, C. F. J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nature Phys. 5, 840–844 (2009).
    Article Google Scholar
  9. Coraux, J. et al. Growth of graphene on Ir(111). New J. Phys. 11, 023006 (2009).
    Article Google Scholar
  10. Miller, D. L. et al. Observing the quantization of zero mass carriers in graphene. Science 324, 924–927 (2009).
    Article CAS Google Scholar
  11. Loginova, E., Nie, S., Thurmer, K., Bartelt, N. C. & McCarty, K. F. Defects of graphene on Ir(111): Rotational domains and ridges. Phys. Rev. B 80, 085430 (2009).
    Article Google Scholar
  12. Park, H. J., Meyer, J., Roth, S. & Skákalová, V. Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48, 1088–1094 (2010).
    Article CAS Google Scholar
  13. Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I. I. & Batzill, M. An extended defect in graphene as a metallic wire. Nature Nanotech. 5, 326–329 (2010).
    Article CAS Google Scholar
  14. Sutton, A. P. & Balluffi, R. W. Interfaces in Crystalline Materials (Clarendon Press, 1995).
    Google Scholar
  15. Read, W. T. & Shockley, W. Dislocation models of crystal grain boundaries. Phys. Rev. 78, 275–289 (1950).
    Article CAS Google Scholar
  16. Yazyev, O. V. & Louie, S. G. Topological defects in graphene: Dislocations and grain boundaries. Phys. Rev. B 81, 195420 (2010).
    Article Google Scholar
  17. White, C. T. & Mintmire, J. W. Density of states reflects diameter in nanotubes. Nature 394, 29–30 (1998).
    Article CAS Google Scholar
  18. Mintmire, J. W. & White, C. T. Universal density of states for carbon nanotubes. Phys. Rev. Lett. 81, 2506–2509 (1998).
    Article CAS Google Scholar
  19. Carraro, C. & Nelson, D. R. Grain-boundary buckling and spin-glass models of disorder in membranes. Phys. Rev. E 48, 3082–3090 (1993).
    Article CAS Google Scholar
  20. Simonis, P. et al. STM study of a grain boundary in graphite. Surf. Sci. 511, 319–322 (2002).
    Article CAS Google Scholar
  21. Liu, Y. & Yakobson, B. I. Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett. 10, 2178–2183 (2010).
    Article CAS Google Scholar
  22. Koskinen, P., Malola, S. & Häkkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 101, 115502 (2008).
    Article Google Scholar
  23. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006).
    Article CAS Google Scholar
  24. Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Phys. 5, 222–226 (2009).
    Article CAS Google Scholar
  25. Stander, N., Huard, B. & Goldhaber-Gordon, D. Evidence for Klein tunneling in graphene p_–_n junctions. Phys. Rev. Lett. 102, 026807 (2009).
    Article CAS Google Scholar
  26. Xia, F., Farmer, D. B., Lin, Y-M. & Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010).
    Article CAS Google Scholar
  27. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002).
    Article CAS Google Scholar
  28. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
    Article CAS Google Scholar
  29. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).
    Article CAS Google Scholar
  30. Brandbyge, M., Mozos, J-L., Ordejón, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).
    Article Google Scholar

Download references