Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair (original) (raw)

References

  1. Langer, R. & Vacanti, J. P. Tissue engineering. Science 260, 920–926 (1993).
    Article CAS Google Scholar
  2. Oberpenning, F., Meng, J., Yoo, J. J. & Atala, A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nature Biotechnol. 17, 149–155 (1999).
    CAS Google Scholar
  3. Wang, P., Hu, J. & Ma, P. X. The engineering of patient-specific, anatomically shaped, digits. Biomaterials 30, 2735–2740 (2009).
    Article CAS Google Scholar
  4. Chen, V. J., Smith, L. A. & Ma, P. X. Bone regeneration on computer-designed nano-fibrous scaffolds. Biomaterials 27, 3973–3979 (2006).
    Article CAS Google Scholar
  5. Elisseeff, J. et al. Transdermal photopolymerization for minimally invasive implantation. Proc. Natl Acad. Sci. USA 96, 3104–3107 (1999).
    Article CAS Google Scholar
  6. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).
    Article CAS Google Scholar
  7. Rice, M. A., Waters, K. R. & Anseth, K. S. Ultrasound monitoring of cartilaginous matrix evolution in degradable PEG hydrogels. Acta Biomater. 5, 152–161 (2009).
    Article CAS Google Scholar
  8. Wang, D. A. et al. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nature Mater. 6, 385–392 (2007).
    Article CAS Google Scholar
  9. Benoit, D. S., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Mater. 7, 816–823 (2008).
    Article CAS Google Scholar
  10. Strehin, I., Nahas, Z., Arora, K., Nguyen, T. & Elisseeff, J. A versatile pH sensitive chondroitin sulphate-PEG tissue adhesive and hydrogel. Biomaterials 31, 2788–2797 (2010).
    Article CAS Google Scholar
  11. Esfand, R. & Tomalia, D. A. Poly(amidoamine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications. Drug Discovery Today 6, 427–436 (2001).
    Article CAS Google Scholar
  12. Roberts, J. C., Bhalgat, M. K. & Zera, R. T. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst(TM) dendrimers. J. Biomed. Mater. Res. 30, 53–65 (1996).
    Article CAS Google Scholar
  13. Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).
    Article CAS Google Scholar
  14. Meredith, J. E., Fazeli, B. & Schwartz, M. A. The extracellular-matrix as a cell-survival factor. Mol. Biol. Cell 4, 953–961 (1993).
    Article CAS Google Scholar
  15. Gullberg, D. & Ekblom, P. Extracellular matrix and its receptors during development. Int. J. Dev. Biol. 39, 845–854 (1995).
    CAS Google Scholar
  16. Rosso, F., Giordano, A., Barbarisi, M. & Barbarisi, A. From cell–ECM interactions to tissue engineering. J. Cell. Physiol. 199, 174–180 (2004).
    Article CAS Google Scholar
  17. Ma, P.X. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 60, 184–198 (2008).
    Article CAS Google Scholar
  18. Liu, X. H. & Ma, P. X. Polymeric scaffolds for bone tissue engineering. Ann. Biomed. Eng. 32, 477–486 (2004).
    Article Google Scholar
  19. Woo, K. M., Chen, V. J. & Ma, P. X. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J. Biomed. Mater. Res. A 67A, 531–537 (2003).
    Article CAS Google Scholar
  20. Benya, P. D. & Shaffer, J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215–224 (1982).
    Article CAS Google Scholar
  21. Hu, J., Feng, K., Liu, X. & Ma, P. X. Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network. Biomaterials 30, 5061–5067 (2009).
    Article CAS Google Scholar
  22. Mitragotri, S. & Lahann, J. Physical approaches to biomaterial design. Nature Mater. 8, 15–23 (2009).
    Article CAS Google Scholar
  23. Zhang, Z., McCaffery, J. M., Spencer, R. G. & Francomano, C. A. Growth and integration of neocartilage with native cartilage in vitro. J. Orthop. Res. 23, 433–439 (2005).
    Article Google Scholar
  24. Ahsan, T. & Sah, R. L. Biomechanics of integrative cartilage repair. Osteoarthr. Cartil. 7, 29–40 (1999).
    Article CAS Google Scholar
  25. Hunziker, E. B. Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 10, 432–463 (2002).
    Article CAS Google Scholar
  26. O’Driscoll, S. W., Keeley, F. W. & Salter, R. B. The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J. Bone Joint Surg. Am. 68, 1017–1035 (1986).
    Google Scholar

Download references