Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale (original) (raw)
References
Derjaguin, B. V., Muller, V. M. & Toporov, Yu. P. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci.53, 314–326 (1975). ArticleCAS Google Scholar
Johnson, K. L., Kendall, K. & Roberts, A. D. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A324, 301–313 (1971). ArticleCAS Google Scholar
Prelas, G. A., Popovici, G. & Bigelow, L. K. Handbook of Industrial Diamonds and Diamond Films (Marcel Dekker, 1998). Google Scholar
Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys.51, 1–186 (2002). ArticleCAS Google Scholar
Allen, M. J., Tung, V. C. & Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev.110, 132–145 (2010). ArticleCAS Google Scholar
Filleter, T. et al. Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett.102, 086102 (2009). ArticleCAS Google Scholar
Filleter, T. & Bennewitz, R. Structural and frictional properties of graphene films on SiC(0001) studied by atomic force microscopy. Phys. Rev. B81, 155412 (2010). Article Google Scholar
Lee, C. et al. Frictional characteristics of atomically thin sheets. Science328, 76–80 (2010). ArticleCAS Google Scholar
Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett.92, 126101 (2004). Article Google Scholar
Lee, H., Lee, N., Seo, Y., Eom, J. & Lee, S. Comparison of frictional forces on graphene and graphite. Nanotechnology20, 325701 (2009). Article Google Scholar
Marchon, B., Carrazza, J., Heinemann, H. & Somorjai, G. A. TPD and XPS studies of O2, CO2, and H2O adsorption on clean polycrystalline graphite. Carbon26, 507–514 (1988). ArticleCAS Google Scholar
Wang, S., Zhang, Y., Abidi, N. & Cabrales, L. Wettability and surface free energy of graphene films. Langmuir25, 11078 (2009). ArticleCAS Google Scholar
Socoliuc, A., Bennewitz, R., Gnecco, E. & Meyer, E. Transition from stick-slip to continuous sliding in atomic friction: Entering a new regime of ultralow friction. Phys. Rev. Lett.92, 134301 (2004). ArticleCAS Google Scholar
Lantz, M. A., O’Shea, S. J., Hoole, A. C. F. & Welland, M. E. Lateral stiffness of the tip and tip-sample contact in frictional force microscopy. Appl. Phys. Lett.70, 970–972 (1996). Article Google Scholar
Carpick, R. W., Ogletree, D. F. & Salmeron, M. Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl. Phys. Lett.70, 1548–1550 (1997). ArticleCAS Google Scholar
Dong, Y., Perez, D., Voter, A. F. & Martini, A. The roles of statics and dynamics in determining transitions between atomic friction regimes. Tribol. Lett.42, 99–107 (2011). Article Google Scholar
Zacharia, R., Ulbricht, H. & Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B69, 155406 (2004). Article Google Scholar
Hasegawa, M., Nishidate, K. & Iyetomi, H. Energetics of interlayer binding in graphite: The semiempirical approach revisited. Phys. Rev. B76, 115424 (2007). Article Google Scholar
Spanu, L., Sorella, S. & Galli, G. Nature and strength of interlayer binding in graphite. Phys. Rev. Lett.103, 196401 (2009). Article Google Scholar
Grierson, D. S., Flater, E. E. & Carpick, R. W. Accounting for the JKR–DMT transition in adhesion and friction measurements with atomic force microscopy. J. Adhesion Sci. Technol.19, 291–311 (2005). ArticleCAS Google Scholar
Mo, Y., Turner, K. T. & Szlufarska, I. Friction laws at the nanoscale. Nature457, 1116–1119 (2009). ArticleCAS Google Scholar
Smolyanitsky, A., Killgore, J. P. & Tewary, V. K. Effect of elastic deformation on frictional properties of few-layer graphene. Phys. Rev. B85, 035412 (2012). Article Google Scholar