Engineering synthetic vaccines using cues from natural immunity (original) (raw)
References
Germain, R. N. Vaccines and the future of human immunology. Immunity33, 441–450 (2010). CAS Google Scholar
Pulendran, B., Li, S. & Nakaya, H. I. Systems vaccinology. Immunity33, 516–529 (2010). CAS Google Scholar
Plotkin, S. A. Vaccines: Past, present and future. Nature Med.11, S5–S11 (2005). CAS Google Scholar
Rappuoli, R. & Aderem, A. A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature473, 463–469 (2011). CAS Google Scholar
Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature480, 480–489 (2011). CAS Google Scholar
Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New Engl. J. Med.366, 2443–2454 (2012). CAS Google Scholar
Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. New Engl. J. Med.366, 2455–2465 (2012). CAS Google Scholar
Valenta, R. et al. From allergen genes to allergy vaccines. Annu. Rev. Immunol.28, 211–241 (2010). CAS Google Scholar
Dolgin, E. The inverse of immunity. Nature Med.16, 740–743 (2010). CAS Google Scholar
D'Argenio, D. A. & Wilson, C. B. A decade of vaccines: Integrating immunology and vaccinology for rational vaccine design. Immunity33, 437–440 (2010). CAS Google Scholar
Steinman, R. M. & Banchereau, J. Taking dendritic cells into medicine. Nature449, 419–426 (2007). CAS Google Scholar
Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature392, 245–252 (1998). CAS Google Scholar
Kawai, T. & Akira, S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol.21, 317–337 (2009). CAS Google Scholar
Bachmann, M. F. et al. The influence of antigen organization on B cell responsiveness. Science262, 1448–1451 (1993). CAS Google Scholar
Blander, J. M. & Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature440, 808–812 (2006). CAS Google Scholar
Kovacsovics-Bankowski, M. & Rock, K. L. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science267, 243–246 (1995). CAS Google Scholar
Lund, A. W. et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep.1, 191–199 (2012). CAS Google Scholar
Lin, M. L., Zhan, Y., Villadangos, J. A. & Lew, A. M. The cell biology of cross-presentation and the role of dendritic cell subsets. Immunol. Cell Biol.86, 353–362 (2008). CAS Google Scholar
Den Haan, J. M. & Bevan, M. J. Constitutive versus activation-dependent cross-presentation of immune complexes by CD8(+) and CD8(-) dendritic cells in vivo. J. Exp. Med.196, 817–827 (2002). CAS Google Scholar
Segura, E., Durand, M. & Amigorena, S. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J. Exp. Med.210, 1035–1047 (2013). CAS Google Scholar
Foged, C., Hansen, J. & Agger, E. M. License to kill: Formulation requirements for optimal priming of CD8(+) CTL responses with particulate vaccine delivery systems. Eur. J. Pharm. Sci.45, 482–491 (2012). CAS Google Scholar
Bachmann, M. F. & Jennings, G. T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nature Rev. Immunol.10, 787–796 (2010). CAS Google Scholar
Kourtis, I. C. et al. Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice. PLoS One8, e61646 (2013). CAS Google Scholar
Swartz, M. A., Hirosue, S. & Hubbell, J. A. Engineering approaches to immunotherapy. Sci. Transl. Med.4, 148rv149 (2012). Google Scholar
Villa, C. H. et al. Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano5, 5300–5311 (2011). CAS Google Scholar
Nembrini, C. et al. Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. Proc. Natl Acad. Sci. USA108, E989–E997 (2011). CAS Google Scholar
Reddy, S. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnol.25, 1159–1164 (2007). CAS Google Scholar
Fifis, T. et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol.173, 3148–3154 (2004). CAS Google Scholar
De Rose, R. et al. Binding, internalization, and antigen presentation of vaccine-loaded nanoengineered capsules in blood. Adv. Mater.20, 4698–4703 (2008). CAS Google Scholar
De Geest, B. G. et al. Surface-engineered polyelectrolyte multilayer capsules: synthetic vaccines mimicking microbial structure and function. Angew. Chem. Int. Ed.51, 3862–3866 (2012). CAS Google Scholar
Dierendonck, M. et al. Facile two-step synthesis of porous antigen-loaded degradable polyelectrolyte microspheres. Angew. Chem. Int. Ed.49, 8620–8624 (2010). CAS Google Scholar
Perry, J. L., Herlihy, K. P., Napier, M. E. & DeSimone, J. M. PRINT: A novel platform toward shape and size specific nanoparticle theranostics. Acc. Chem. Res.44, 990–998 (2011). CAS Google Scholar
Galloway, A. L. et al. Development of a nanoparticle-based influenza vaccine using the PRINT technology. Nanomed Nanotechnol. Biol. Med.9, 523–531 (2013). CAS Google Scholar
Reis e Sousa, C. & Germain, R. N. Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis. J. Exp. Med.182, 841–851 (1995). CAS Google Scholar
Scott, E. A. et al. Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials33, 6211–6219 (2012). CAS Google Scholar
Hirosue, S., Kourtis, I. C., van der Vlies, A. J., Hubbell, J. A. & Swartz, M. A. Antigen delivery to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: Cross-presentation and T cell activation. Vaccine28, 7897–7906 (2010). CAS Google Scholar
Moon, J. J. et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nature Mater.10, 243–251 (2011). CAS Google Scholar
Nordly, P. et al. Immunity by formulation design: induction of high CD8+ T-cell responses by poly(I:C) incorporated into the CAF01 adjuvant via a double emulsion method. J. Control. Release150, 307–317 (2011). CAS Google Scholar
Zaks, K. et al. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J. Immunol.176, 7335–7345 (2006). CAS Google Scholar
Powell, T. J. et al. Plasmodium falciparum synthetic LbL microparticle vaccine elicits protective neutralizing antibody and parasite-specific cellular immune responses. Vaccine31, 1898–1904 (2013). CAS Google Scholar
Kasturi, S. P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature470, 543–547 (2011). CAS Google Scholar
Kazzaz, J. et al. Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J. Control. Release110, 566–573 (2006). CAS Google Scholar
Zhu, Q. et al. Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice. J. Clin. Investig.120, 607–616 (2010). CAS Google Scholar
Garaude, J., Kent, A., van Rooijen, N. & Blander, J. M. Simultaneous targeting of toll- and nod-like receptors induces effective tumor-specific immune responses. Sci. Transl. Med.4, 120ra116 (2012). Google Scholar
Tacken, P. J. et al. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood118, 6836–6844 (2011). CAS Google Scholar
Moon, J. J. et al. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc. Natl Acad. Sci. USA109, 1080–1085 (2012). CAS Google Scholar
Nguyen, D. N. et al. Lipid-derived nanoparticles for immunostimulatory RNA adjuvant delivery. Proc. Natl Acad. Sci. USA109, E797–E803 (2012). CAS Google Scholar
Ng, G. et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity29, 807–818 (2008). CAS Google Scholar
Flach, T. L. et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nature Med.17, 479–487 (2011). CAS Google Scholar
Marichal, T. et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nature Med.17, 996–1002 (2011). CAS Google Scholar
Harris, J., Sharp, F. A. & Lavelle, E. C. The role of inflammasomes in the immunostimulatory effects of particulate vaccine adjuvants. Eur. J. Immunol.40, 634–638 (2010). CAS Google Scholar
Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunol.9, 847–856 (2008). CAS Google Scholar
Shi, Y., Evans, J. E. & Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature425, 516–521 (2003). CAS Google Scholar
Ballester, M. et al. Nanoparticle conjugation and pulmonary delivery enhance the protective efficacy of Ag85B and CpG against tuberculosis. Vaccine29, 6959–6966 (2011). CAS Google Scholar
Sharp, F. A. et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl Acad. Sci. USA106, 870–875 (2009). CAS Google Scholar
Demento, S. L. et al. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine27, 3013–3021 (2009). CAS Google Scholar
De Geest, B. G. et al. Polymeric multilayer capsule-mediated vaccination induces protective immunity against cancer and viral infection. ACS Nano6, 2136–2149 (2012). CAS Google Scholar
Li, H., Li, Y., Jiao, J. & Hu, H. M. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nature Nanotech.6, 645–650 (2011). CAS Google Scholar
Thomas, S. N. et al. Engineering complement activation on polypropylene sulfide vaccine nanoparticles. Biomaterials32, 2194–2203 (2011). CAS Google Scholar
Moyano, D. F. et al. Nanoparticle hydrophobicity dictates immune response. J. Am. Chem. Soc.134, 3965–3967 (2012). CAS Google Scholar
Petersen, L. K. et al. Activation of innate immune responses in a pathogen-mimicking manner by amphiphilic polyanhydride nanoparticle adjuvants. Biomaterials32, 6815–6822 (2011). CAS Google Scholar
Seong, S. Y. & Matzinger, P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nature Rev. Immunol.4, 469–478 (2004). CAS Google Scholar
Rudra, J. S., Tian, Y. F., Jung, J. P. & Collier, J. H. A self-assembling peptide acting as an immune adjuvant. Proc. Natl Acad. Sci. USA107, 622–627 (2010). CAS Google Scholar
Getts, D. R. et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nature Biotechnol.30, 1217–1224 (2012). CAS Google Scholar
Lewis, J. S., Zaveri, T. D., Crooks, C. P. II & Keselowsky, B. G. Microparticle surface modifications targeting dendritic cells for non-activating applications. Biomaterials33, 7221–7232 (2012). CAS Google Scholar
Yeste, A., Nadeau, M., Burns, E. J., Weiner, H. L. & Quintana, F. J. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA109, 11270–11275 (2012). CAS Google Scholar
Tsai, S. et al. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity32, 568–580 (2010). CAS Google Scholar
Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol.77, 4911–4927 (2003). CAS Google Scholar
Mueller, S. N. & Ahmed, R. High antigen levels are the cause of T cell exhaustion during chronic viral infection. Proc. Natl Acad. Sci. USA106, 8623–8628 (2009). CAS Google Scholar
Pape, K. A., Catron, D. M., Itano, A. A. & Jenkins, M. K. The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity26, 491–502 (2007). CAS Google Scholar
Itano, A. A. et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity19, 47–57 (2003). CAS Google Scholar
Johansen, P. et al. Antigen kinetics determines immune reactivity. Proc. Natl Acad. Sci. USA105, 5189–5194 (2008). CAS Google Scholar
Howland, S. W. & Wittrup, K. D. Antigen release kinetics in the phagosome are critical to cross-presentation efficiency. J. Immunol.180, 1576–1583 (2008). CAS Google Scholar
Marx, P. A. et al. Protection against vaginal SIV transmission with microencapsulated vaccine. Science260, 1323–1327 (1993). CAS Google Scholar
Neutra, M. R. & Kozlowski, P. A. Mucosal vaccines: the promise and the challenge. Nature Rev. Immunol.6, 148–158 (2006). CAS Google Scholar
Zhu, G., Mallery, S. & Schwendeman, S. Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide). Nature Biotechnol.18, 52–57 (2000). CAS Google Scholar
Zhu, Q. et al. Large intestine-targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nature Med.18, 1291–1296 (2012). CAS Google Scholar
Fujkuyama, Y. et al. Novel vaccine development strategies for inducing mucosal immunity. Expert Rev. Vaccines11, 367–379 (2012). CAS Google Scholar
Sullivan, S. P. et al. Dissolving polymer microneedle patches for influenza vaccination. Nature Med.16, 915–920 (2010). CAS Google Scholar
Zaric, M. et al. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D, L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano7, 2042–2055 (2013). CAS Google Scholar
Prow, T. W. et al. Nanopatch-targeted skin vaccination against West Nile Virus and Chikungunya virus in mice. Small6, 1776–1784 (2010). CAS Google Scholar
DeMuth, P. C. et al. Polymer multilayer tattooing for enhanced DNA vaccination. Nature Mater.12, 367–376 (2013). CAS Google Scholar
Atuma, C., Strugala, V., Allen, A. & Holm, L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol.280, G922–G929 (2001). CAS Google Scholar
Lai, S. K., Wang, Y. Y., Hida, K., Cone, R. & Hanes, J. Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc. Natl Acad. Sci. USA107, 598–603 (2010). CAS Google Scholar
Tang, B. C. et al. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc. Natl Acad. Sci. USA106, 19268–19273 (2009). CAS Google Scholar
Lai, S. K. et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl Acad. Sci. USA104, 1482–1487 (2007). CAS Google Scholar
Cu, Y., Booth, C. J. & Saltzman, W. M. In vivo distribution of surface-modified PLGA nanoparticles following intravaginal delivery. J. Control. Release156, 258–264 (2011). CAS Google Scholar
Ensign, L. M. et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci. Transl. Med.4, 138ra179 (2012). Google Scholar
Nochi, T. et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nature Mater.9, 572–578 (2010). CAS Google Scholar
Fleury, M. E., Boardman, K. C. & Swartz, M. A. Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys. J.91, 113–121 (2006). CAS Google Scholar
Tang, L., Fan, T. M., Borst, L. B. & Cheng, J. Synthesis and biological response of size-specific, monodisperse drug–silica nanoconjugates. ACS Nano6, 3954–3966 (2012). CAS Google Scholar
Bershteyn, A. et al. Robust IgG responses to nanograms of antigen using a biomimetic lipid-coated particle vaccine. J. Control. Release157, 354–365 (2012). CAS Google Scholar
Murthy, N. et al. A macromolecular delivery vehicle for protein-based vaccines: acid-degradable protein-loaded microgels. Proc. Natl Acad. Sci. USA100, 4995–5000 (2003). CAS Google Scholar
Hu, Y. et al. Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett.7, 3056–3064 (2007). CAS Google Scholar
Su, X., Fricke, J., Kavanagh, D. G. & Irvine, D. J. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol. Pharm.8, 774–787 (2011). CAS Google Scholar
Haining, W. N. et al. pH-triggered microparticles for peptide vaccination. J. Immunol.173, 2578–2585 (2004). CAS Google Scholar
Heffernan, M. J., Kasturi, S. P., Yang, S. C., Pulendran, B. & Murthy, N. The stimulation of CD8+ T cells by dendritic cells pulsed with polyketal microparticles containing ion-paired protein antigen and poly(inosinic acid)-poly(cytidylic acid). Biomaterials30, 910–918 (2009). CAS Google Scholar
Vasdekis, A. E., Scott, E. A., O'Neil, C. P., Psaltis, D. & Hubbell, J. A. Precision intracellular delivery based on optofluidic polymersome rupture. ACS Nano6, 7850–7857 (2012). CAS Google Scholar
Shen, H. et al. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology117, 78–88 (2006). CAS Google Scholar
Geall, A. J. et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl Acad. Sci. USA109, 14604–14609 (2012). CAS Google Scholar
Verma, A. et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nature Mater.7, 588–595 (2008). CAS Google Scholar
Marrack, P., McKee, A. & Munks, M. Towards an understanding of the adjuvant action of aluminium. Nature Rev. Immunol.9, 287–293 (2009). CAS Google Scholar
Hutchison, S. et al. Antigen depot is not required for alum adjuvanticity. FASEB J.26, 1272–1279 (2012). CAS Google Scholar
Gupta, R. K., Chang, A. C., Griffin, P., Rivera, R. & Siber, G. R. In vivo distribution of radioactivity in mice after injection of biodegradable polymer microspheres containing 14C-labeled tetanus toxoid. Vaccine14, 1412–1416 (1996). CAS Google Scholar
Preis, I. & Langer, R. S. A single-step immunization by sustained antigen release. J. Immunol. Methods28, 193–197 (1979). CAS Google Scholar
Thomasin, C., Corradin, G., Men, Y., Merkle, H. P. & Gander, B. Tetanus toxoid and synthetic malaria antigen containing poly(lactide)/poly(lactide-co-glycolide) microspheres: Importance of polymer degradation and antigen release for immune response. J. Control. Release41, 131–145 (1996). CAS Google Scholar
Hailemichael, Y. et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nature Med.19, 465–472 (2013). CAS Google Scholar
Jewell, C. M., Lopez, S. C. & Irvine, D. J. In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc. Natl Acad. Sci. USA108, 15745–15750 (2011). CAS Google Scholar
St John, A. L., Chan, C. Y., Staats, H. F., Leong, K. W. & Abraham, S. N. Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes. Nature Mater.11, 250–257 (2012). CAS Google Scholar
Braumuller, H. et al. T-helper-1-cell cytokines drive cancer into senescence. Nature494, 361–365 (2013). Google Scholar
Reiner, S. L. & Locksley, R. M. The regulation of immunity to Leishmania major. Annu. Rev. Immunol.13, 151–177 (1995). CAS Google Scholar
Ali, O. A., Emerich, D., Dranoff, G. & Mooney, D. J. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci. Transl. Med.1, 8ra19 (2009). Google Scholar
Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. Nature Mater.8, 151–158 (2009). CAS Google Scholar
Singh, A. et al. An injectable synthetic immune-priming center mediates efficient T-cell class switching and T-helper 1 response against B cell lymphoma. J. Control. Release155, 184–192 (2011). CAS Google Scholar
Langhorne, J. et al. The relevance of non-human primate and rodent malaria models for humans. Malaria J.10, 23 (2011). Google Scholar
Morgan, C. et al. The use of nonhuman primate models in HIV vaccine development. PLoS Med.5, e173 (2008). Google Scholar
Tsuji, K. et al. Induction of immune response against NY-ESO-1 by CHP-NY-ESO-1 vaccination and immune regulation in a melanoma patient. Cancer Immunol. Immunother. CII57, 1429–1437 (2008). Google Scholar
Ataman-Onal, Y. et al. Surfactant-free anionic PLA nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. J. Control. Release112, 175–185 (2006). Google Scholar
Otten, G. et al. Induction of broad and potent anti-human immunodeficiency virus immune responses in rhesus macaques by priming with a DNA vaccine and boosting with protein-adsorbed polylactide coglycolide microparticles. J. Virol.77, 6087–6092 (2003). CAS Google Scholar
Appay, V., Douek, D. C. & Price, D. A. CD8+ T cell efficacy in vaccination and disease. Nature Med.14, 623–628 (2008). CAS Google Scholar
Nimmerjahn, F. & Ravetch, J. V. Antibody-mediated modulation of immune responses. Immunol. Rev.236, 265–275 (2010). CAS Google Scholar
Virgin, H. W. & Walker, B. D. Immunology and the elusive AIDS vaccine. Nature464, 224–231 (2010). CAS Google Scholar
Crow, J. M. HPV: The global burden. Nature488, S2–S3 (2012). Google Scholar
Ma, B., Xu, Y., Hung, C-F. & Wu, T-C. HPV and therapeutic vaccines: where are we in 2010? Curr. Cancer Ther. Rev.6, 81–103 (2010). CAS Google Scholar
Klebanoff, C. A., Acquavella, N., Yu, Z. & Restifo, N. P. Therapeutic cancer vaccines: are we there yet? Immunol. Rev.239, 27–44 (2011). CAS Google Scholar
Harrison, L. C. Vaccination against self to prevent autoimmune disease: the type 1 diabetes model. Immunol. Cell Biol.86, 139–145 (2008). CAS Google Scholar
Wisniewski, T. & Goni, F. Immunomodulation for prion and prion-related diseases. Expert Rev. Vaccines9, 1441–1452 (2010). CAS Google Scholar
Linhart, B. & Valenta, R. Vaccines for allergy. Curr. Opin. Immunol.24, 354–360 (2012). CAS Google Scholar
Sela, M. & Mozes, E. Therapeutic vaccines in autoimmunity. Proc. Natl Acad. Sci. USA101, Suppl. 2, 14586–14592 (2004). CAS Google Scholar
Velluto, D. et al. PEG-b-PPS-b-PEI micelles and PEG-b-PPS/PEG-b-PPS-b-PEI mixed micelles as non-viral vectors for plasmid DNA: Tumor immunotoxicity in B16F10 melanoma. Biomaterials32, 9839–9847 (2011). CAS Google Scholar
Caruso, F. et al. Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. Langmuir16, 1485–1488 (2000). CAS Google Scholar