Engineering synthetic vaccines using cues from natural immunity (original) (raw)

References

  1. Germain, R. N. Vaccines and the future of human immunology. Immunity 33, 441–450 (2010).
    CAS Google Scholar
  2. Pulendran, B., Li, S. & Nakaya, H. I. Systems vaccinology. Immunity 33, 516–529 (2010).
    CAS Google Scholar
  3. Plotkin, S. A. Vaccines: Past, present and future. Nature Med. 11, S5–S11 (2005).
    CAS Google Scholar
  4. Rappuoli, R. & Aderem, A. A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature 473, 463–469 (2011).
    CAS Google Scholar
  5. Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480–489 (2011).
    CAS Google Scholar
  6. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New Engl. J. Med. 366, 2443–2454 (2012).
    CAS Google Scholar
  7. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. New Engl. J. Med. 366, 2455–2465 (2012).
    CAS Google Scholar
  8. Valenta, R. et al. From allergen genes to allergy vaccines. Annu. Rev. Immunol. 28, 211–241 (2010).
    CAS Google Scholar
  9. Dolgin, E. The inverse of immunity. Nature Med. 16, 740–743 (2010).
    CAS Google Scholar
  10. D'Argenio, D. A. & Wilson, C. B. A decade of vaccines: Integrating immunology and vaccinology for rational vaccine design. Immunity 33, 437–440 (2010).
    CAS Google Scholar
  11. Steinman, R. M. & Banchereau, J. Taking dendritic cells into medicine. Nature 449, 419–426 (2007).
    CAS Google Scholar
  12. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).
    CAS Google Scholar
  13. Kawai, T. & Akira, S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21, 317–337 (2009).
    CAS Google Scholar
  14. Bachmann, M. F. et al. The influence of antigen organization on B cell responsiveness. Science 262, 1448–1451 (1993).
    CAS Google Scholar
  15. Blander, J. M. & Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440, 808–812 (2006).
    CAS Google Scholar
  16. Kovacsovics-Bankowski, M. & Rock, K. L. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267, 243–246 (1995).
    CAS Google Scholar
  17. Lund, A. W. et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 1, 191–199 (2012).
    CAS Google Scholar
  18. Lin, M. L., Zhan, Y., Villadangos, J. A. & Lew, A. M. The cell biology of cross-presentation and the role of dendritic cell subsets. Immunol. Cell Biol. 86, 353–362 (2008).
    CAS Google Scholar
  19. Den Haan, J. M. & Bevan, M. J. Constitutive versus activation-dependent cross-presentation of immune complexes by CD8(+) and CD8(-) dendritic cells in vivo. J. Exp. Med. 196, 817–827 (2002).
    CAS Google Scholar
  20. Segura, E., Durand, M. & Amigorena, S. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J. Exp. Med. 210, 1035–1047 (2013).
    CAS Google Scholar
  21. Foged, C., Hansen, J. & Agger, E. M. License to kill: Formulation requirements for optimal priming of CD8(+) CTL responses with particulate vaccine delivery systems. Eur. J. Pharm. Sci. 45, 482–491 (2012).
    CAS Google Scholar
  22. Bachmann, M. F. & Jennings, G. T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nature Rev. Immunol. 10, 787–796 (2010).
    CAS Google Scholar
  23. Kourtis, I. C. et al. Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice. PLoS One 8, e61646 (2013).
    CAS Google Scholar
  24. Swartz, M. A., Hirosue, S. & Hubbell, J. A. Engineering approaches to immunotherapy. Sci. Transl. Med. 4, 148rv149 (2012).
    Google Scholar
  25. Villa, C. H. et al. Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano 5, 5300–5311 (2011).
    CAS Google Scholar
  26. Nembrini, C. et al. Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. Proc. Natl Acad. Sci. USA 108, E989–E997 (2011).
    CAS Google Scholar
  27. Reddy, S. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnol. 25, 1159–1164 (2007).
    CAS Google Scholar
  28. Fifis, T. et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173, 3148–3154 (2004).
    CAS Google Scholar
  29. De Rose, R. et al. Binding, internalization, and antigen presentation of vaccine-loaded nanoengineered capsules in blood. Adv. Mater. 20, 4698–4703 (2008).
    CAS Google Scholar
  30. De Geest, B. G. et al. Surface-engineered polyelectrolyte multilayer capsules: synthetic vaccines mimicking microbial structure and function. Angew. Chem. Int. Ed. 51, 3862–3866 (2012).
    CAS Google Scholar
  31. Dierendonck, M. et al. Facile two-step synthesis of porous antigen-loaded degradable polyelectrolyte microspheres. Angew. Chem. Int. Ed. 49, 8620–8624 (2010).
    CAS Google Scholar
  32. Perry, J. L., Herlihy, K. P., Napier, M. E. & DeSimone, J. M. PRINT: A novel platform toward shape and size specific nanoparticle theranostics. Acc. Chem. Res. 44, 990–998 (2011).
    CAS Google Scholar
  33. Galloway, A. L. et al. Development of a nanoparticle-based influenza vaccine using the PRINT technology. Nanomed Nanotechnol. Biol. Med. 9, 523–531 (2013).
    CAS Google Scholar
  34. Reis e Sousa, C. & Germain, R. N. Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis. J. Exp. Med. 182, 841–851 (1995).
    CAS Google Scholar
  35. Scott, E. A. et al. Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials 33, 6211–6219 (2012).
    CAS Google Scholar
  36. Hirosue, S., Kourtis, I. C., van der Vlies, A. J., Hubbell, J. A. & Swartz, M. A. Antigen delivery to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: Cross-presentation and T cell activation. Vaccine 28, 7897–7906 (2010).
    CAS Google Scholar
  37. Moon, J. J. et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nature Mater. 10, 243–251 (2011).
    CAS Google Scholar
  38. Nordly, P. et al. Immunity by formulation design: induction of high CD8+ T-cell responses by poly(I:C) incorporated into the CAF01 adjuvant via a double emulsion method. J. Control. Release 150, 307–317 (2011).
    CAS Google Scholar
  39. Zaks, K. et al. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J. Immunol. 176, 7335–7345 (2006).
    CAS Google Scholar
  40. Powell, T. J. et al. Plasmodium falciparum synthetic LbL microparticle vaccine elicits protective neutralizing antibody and parasite-specific cellular immune responses. Vaccine 31, 1898–1904 (2013).
    CAS Google Scholar
  41. Kasturi, S. P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–547 (2011).
    CAS Google Scholar
  42. Kazzaz, J. et al. Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J. Control. Release 110, 566–573 (2006).
    CAS Google Scholar
  43. Zhu, Q. et al. Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice. J. Clin. Investig. 120, 607–616 (2010).
    CAS Google Scholar
  44. Garaude, J., Kent, A., van Rooijen, N. & Blander, J. M. Simultaneous targeting of toll- and nod-like receptors induces effective tumor-specific immune responses. Sci. Transl. Med. 4, 120ra116 (2012).
    Google Scholar
  45. Tacken, P. J. et al. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood 118, 6836–6844 (2011).
    CAS Google Scholar
  46. Moon, J. J. et al. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc. Natl Acad. Sci. USA 109, 1080–1085 (2012).
    CAS Google Scholar
  47. Nguyen, D. N. et al. Lipid-derived nanoparticles for immunostimulatory RNA adjuvant delivery. Proc. Natl Acad. Sci. USA 109, E797–E803 (2012).
    CAS Google Scholar
  48. Ng, G. et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29, 807–818 (2008).
    CAS Google Scholar
  49. Flach, T. L. et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nature Med. 17, 479–487 (2011).
    CAS Google Scholar
  50. Marichal, T. et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nature Med. 17, 996–1002 (2011).
    CAS Google Scholar
  51. Harris, J., Sharp, F. A. & Lavelle, E. C. The role of inflammasomes in the immunostimulatory effects of particulate vaccine adjuvants. Eur. J. Immunol. 40, 634–638 (2010).
    CAS Google Scholar
  52. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunol. 9, 847–856 (2008).
    CAS Google Scholar
  53. Shi, Y., Evans, J. E. & Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003).
    CAS Google Scholar
  54. Ballester, M. et al. Nanoparticle conjugation and pulmonary delivery enhance the protective efficacy of Ag85B and CpG against tuberculosis. Vaccine 29, 6959–6966 (2011).
    CAS Google Scholar
  55. Sharp, F. A. et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl Acad. Sci. USA 106, 870–875 (2009).
    CAS Google Scholar
  56. Demento, S. L. et al. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 27, 3013–3021 (2009).
    CAS Google Scholar
  57. De Geest, B. G. et al. Polymeric multilayer capsule-mediated vaccination induces protective immunity against cancer and viral infection. ACS Nano 6, 2136–2149 (2012).
    CAS Google Scholar
  58. Li, H., Li, Y., Jiao, J. & Hu, H. M. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nature Nanotech. 6, 645–650 (2011).
    CAS Google Scholar
  59. Thomas, S. N. et al. Engineering complement activation on polypropylene sulfide vaccine nanoparticles. Biomaterials 32, 2194–2203 (2011).
    CAS Google Scholar
  60. Moyano, D. F. et al. Nanoparticle hydrophobicity dictates immune response. J. Am. Chem. Soc. 134, 3965–3967 (2012).
    CAS Google Scholar
  61. Petersen, L. K. et al. Activation of innate immune responses in a pathogen-mimicking manner by amphiphilic polyanhydride nanoparticle adjuvants. Biomaterials 32, 6815–6822 (2011).
    CAS Google Scholar
  62. Seong, S. Y. & Matzinger, P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nature Rev. Immunol. 4, 469–478 (2004).
    CAS Google Scholar
  63. Rudra, J. S., Tian, Y. F., Jung, J. P. & Collier, J. H. A self-assembling peptide acting as an immune adjuvant. Proc. Natl Acad. Sci. USA 107, 622–627 (2010).
    CAS Google Scholar
  64. Getts, D. R. et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nature Biotechnol. 30, 1217–1224 (2012).
    CAS Google Scholar
  65. Lewis, J. S., Zaveri, T. D., Crooks, C. P. II & Keselowsky, B. G. Microparticle surface modifications targeting dendritic cells for non-activating applications. Biomaterials 33, 7221–7232 (2012).
    CAS Google Scholar
  66. Yeste, A., Nadeau, M., Burns, E. J., Weiner, H. L. & Quintana, F. J. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 109, 11270–11275 (2012).
    CAS Google Scholar
  67. Tsai, S. et al. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 32, 568–580 (2010).
    CAS Google Scholar
  68. Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003).
    CAS Google Scholar
  69. Mueller, S. N. & Ahmed, R. High antigen levels are the cause of T cell exhaustion during chronic viral infection. Proc. Natl Acad. Sci. USA 106, 8623–8628 (2009).
    CAS Google Scholar
  70. Pape, K. A., Catron, D. M., Itano, A. A. & Jenkins, M. K. The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity 26, 491–502 (2007).
    CAS Google Scholar
  71. Itano, A. A. et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19, 47–57 (2003).
    CAS Google Scholar
  72. Johansen, P. et al. Antigen kinetics determines immune reactivity. Proc. Natl Acad. Sci. USA 105, 5189–5194 (2008).
    CAS Google Scholar
  73. Howland, S. W. & Wittrup, K. D. Antigen release kinetics in the phagosome are critical to cross-presentation efficiency. J. Immunol. 180, 1576–1583 (2008).
    CAS Google Scholar
  74. Marx, P. A. et al. Protection against vaginal SIV transmission with microencapsulated vaccine. Science 260, 1323–1327 (1993).
    CAS Google Scholar
  75. Neutra, M. R. & Kozlowski, P. A. Mucosal vaccines: the promise and the challenge. Nature Rev. Immunol. 6, 148–158 (2006).
    CAS Google Scholar
  76. Zhu, G., Mallery, S. & Schwendeman, S. Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide). Nature Biotechnol. 18, 52–57 (2000).
    CAS Google Scholar
  77. Zhu, Q. et al. Large intestine-targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nature Med. 18, 1291–1296 (2012).
    CAS Google Scholar
  78. Fujkuyama, Y. et al. Novel vaccine development strategies for inducing mucosal immunity. Expert Rev. Vaccines 11, 367–379 (2012).
    CAS Google Scholar
  79. Sullivan, S. P. et al. Dissolving polymer microneedle patches for influenza vaccination. Nature Med. 16, 915–920 (2010).
    CAS Google Scholar
  80. Zaric, M. et al. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D, L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano 7, 2042–2055 (2013).
    CAS Google Scholar
  81. Prow, T. W. et al. Nanopatch-targeted skin vaccination against West Nile Virus and Chikungunya virus in mice. Small 6, 1776–1784 (2010).
    CAS Google Scholar
  82. DeMuth, P. C. et al. Polymer multilayer tattooing for enhanced DNA vaccination. Nature Mater. 12, 367–376 (2013).
    CAS Google Scholar
  83. Atuma, C., Strugala, V., Allen, A. & Holm, L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G922–G929 (2001).
    CAS Google Scholar
  84. Lai, S. K., Wang, Y. Y., Hida, K., Cone, R. & Hanes, J. Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc. Natl Acad. Sci. USA 107, 598–603 (2010).
    CAS Google Scholar
  85. Tang, B. C. et al. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc. Natl Acad. Sci. USA 106, 19268–19273 (2009).
    CAS Google Scholar
  86. Lai, S. K. et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl Acad. Sci. USA 104, 1482–1487 (2007).
    CAS Google Scholar
  87. Cu, Y., Booth, C. J. & Saltzman, W. M. In vivo distribution of surface-modified PLGA nanoparticles following intravaginal delivery. J. Control. Release 156, 258–264 (2011).
    CAS Google Scholar
  88. Ensign, L. M. et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci. Transl. Med. 4, 138ra179 (2012).
    Google Scholar
  89. Nochi, T. et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nature Mater. 9, 572–578 (2010).
    CAS Google Scholar
  90. Fleury, M. E., Boardman, K. C. & Swartz, M. A. Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys. J. 91, 113–121 (2006).
    CAS Google Scholar
  91. Tang, L., Fan, T. M., Borst, L. B. & Cheng, J. Synthesis and biological response of size-specific, monodisperse drug–silica nanoconjugates. ACS Nano 6, 3954–3966 (2012).
    CAS Google Scholar
  92. Bershteyn, A. et al. Robust IgG responses to nanograms of antigen using a biomimetic lipid-coated particle vaccine. J. Control. Release 157, 354–365 (2012).
    CAS Google Scholar
  93. Murthy, N. et al. A macromolecular delivery vehicle for protein-based vaccines: acid-degradable protein-loaded microgels. Proc. Natl Acad. Sci. USA 100, 4995–5000 (2003).
    CAS Google Scholar
  94. Hu, Y. et al. Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett. 7, 3056–3064 (2007).
    CAS Google Scholar
  95. Su, X., Fricke, J., Kavanagh, D. G. & Irvine, D. J. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol. Pharm. 8, 774–787 (2011).
    CAS Google Scholar
  96. Haining, W. N. et al. pH-triggered microparticles for peptide vaccination. J. Immunol. 173, 2578–2585 (2004).
    CAS Google Scholar
  97. Heffernan, M. J., Kasturi, S. P., Yang, S. C., Pulendran, B. & Murthy, N. The stimulation of CD8+ T cells by dendritic cells pulsed with polyketal microparticles containing ion-paired protein antigen and poly(inosinic acid)-poly(cytidylic acid). Biomaterials 30, 910–918 (2009).
    CAS Google Scholar
  98. Vasdekis, A. E., Scott, E. A., O'Neil, C. P., Psaltis, D. & Hubbell, J. A. Precision intracellular delivery based on optofluidic polymersome rupture. ACS Nano 6, 7850–7857 (2012).
    CAS Google Scholar
  99. Shen, H. et al. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117, 78–88 (2006).
    CAS Google Scholar
  100. Geall, A. J. et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl Acad. Sci. USA 109, 14604–14609 (2012).
    CAS Google Scholar
  101. Verma, A. et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nature Mater. 7, 588–595 (2008).
    CAS Google Scholar
  102. Marrack, P., McKee, A. & Munks, M. Towards an understanding of the adjuvant action of aluminium. Nature Rev. Immunol. 9, 287–293 (2009).
    CAS Google Scholar
  103. Hutchison, S. et al. Antigen depot is not required for alum adjuvanticity. FASEB J. 26, 1272–1279 (2012).
    CAS Google Scholar
  104. Gupta, R. K., Chang, A. C., Griffin, P., Rivera, R. & Siber, G. R. In vivo distribution of radioactivity in mice after injection of biodegradable polymer microspheres containing 14C-labeled tetanus toxoid. Vaccine 14, 1412–1416 (1996).
    CAS Google Scholar
  105. Preis, I. & Langer, R. S. A single-step immunization by sustained antigen release. J. Immunol. Methods 28, 193–197 (1979).
    CAS Google Scholar
  106. Thomasin, C., Corradin, G., Men, Y., Merkle, H. P. & Gander, B. Tetanus toxoid and synthetic malaria antigen containing poly(lactide)/poly(lactide-co-glycolide) microspheres: Importance of polymer degradation and antigen release for immune response. J. Control. Release 41, 131–145 (1996).
    CAS Google Scholar
  107. Hailemichael, Y. et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nature Med. 19, 465–472 (2013).
    CAS Google Scholar
  108. Jewell, C. M., Lopez, S. C. & Irvine, D. J. In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc. Natl Acad. Sci. USA 108, 15745–15750 (2011).
    CAS Google Scholar
  109. St John, A. L., Chan, C. Y., Staats, H. F., Leong, K. W. & Abraham, S. N. Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes. Nature Mater. 11, 250–257 (2012).
    CAS Google Scholar
  110. Braumuller, H. et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 494, 361–365 (2013).
    Google Scholar
  111. Reiner, S. L. & Locksley, R. M. The regulation of immunity to Leishmania major. Annu. Rev. Immunol. 13, 151–177 (1995).
    CAS Google Scholar
  112. Ali, O. A., Emerich, D., Dranoff, G. & Mooney, D. J. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci. Transl. Med. 1, 8ra19 (2009).
    Google Scholar
  113. Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. Nature Mater. 8, 151–158 (2009).
    CAS Google Scholar
  114. Singh, A. et al. An injectable synthetic immune-priming center mediates efficient T-cell class switching and T-helper 1 response against B cell lymphoma. J. Control. Release 155, 184–192 (2011).
    CAS Google Scholar
  115. Langhorne, J. et al. The relevance of non-human primate and rodent malaria models for humans. Malaria J. 10, 23 (2011).
    Google Scholar
  116. Morgan, C. et al. The use of nonhuman primate models in HIV vaccine development. PLoS Med. 5, e173 (2008).
    Google Scholar
  117. Tsuji, K. et al. Induction of immune response against NY-ESO-1 by CHP-NY-ESO-1 vaccination and immune regulation in a melanoma patient. Cancer Immunol. Immunother. CII 57, 1429–1437 (2008).
    Google Scholar
  118. Ataman-Onal, Y. et al. Surfactant-free anionic PLA nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. J. Control. Release 112, 175–185 (2006).
    Google Scholar
  119. Otten, G. et al. Induction of broad and potent anti-human immunodeficiency virus immune responses in rhesus macaques by priming with a DNA vaccine and boosting with protein-adsorbed polylactide coglycolide microparticles. J. Virol. 77, 6087–6092 (2003).
    CAS Google Scholar
  120. Appay, V., Douek, D. C. & Price, D. A. CD8+ T cell efficacy in vaccination and disease. Nature Med. 14, 623–628 (2008).
    CAS Google Scholar
  121. Nimmerjahn, F. & Ravetch, J. V. Antibody-mediated modulation of immune responses. Immunol. Rev. 236, 265–275 (2010).
    CAS Google Scholar
  122. Virgin, H. W. & Walker, B. D. Immunology and the elusive AIDS vaccine. Nature 464, 224–231 (2010).
    CAS Google Scholar
  123. Crow, J. M. HPV: The global burden. Nature 488, S2–S3 (2012).
    Google Scholar
  124. Ma, B., Xu, Y., Hung, C-F. & Wu, T-C. HPV and therapeutic vaccines: where are we in 2010? Curr. Cancer Ther. Rev. 6, 81–103 (2010).
    CAS Google Scholar
  125. Klebanoff, C. A., Acquavella, N., Yu, Z. & Restifo, N. P. Therapeutic cancer vaccines: are we there yet? Immunol. Rev. 239, 27–44 (2011).
    CAS Google Scholar
  126. Harrison, L. C. Vaccination against self to prevent autoimmune disease: the type 1 diabetes model. Immunol. Cell Biol. 86, 139–145 (2008).
    CAS Google Scholar
  127. Wisniewski, T. & Goni, F. Immunomodulation for prion and prion-related diseases. Expert Rev. Vaccines 9, 1441–1452 (2010).
    CAS Google Scholar
  128. Linhart, B. & Valenta, R. Vaccines for allergy. Curr. Opin. Immunol. 24, 354–360 (2012).
    CAS Google Scholar
  129. Sela, M. & Mozes, E. Therapeutic vaccines in autoimmunity. Proc. Natl Acad. Sci. USA 101, Suppl. 2, 14586–14592 (2004).
    CAS Google Scholar
  130. Velluto, D. et al. PEG-b-PPS-b-PEI micelles and PEG-b-PPS/PEG-b-PPS-b-PEI mixed micelles as non-viral vectors for plasmid DNA: Tumor immunotoxicity in B16F10 melanoma. Biomaterials 32, 9839–9847 (2011).
    CAS Google Scholar
  131. Caruso, F. et al. Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. Langmuir 16, 1485–1488 (2000).
    CAS Google Scholar

Download references