Diegelmann, R. F. & Evans, M. C. Wound healing: An overview of acute, fibrotic and delayed healing. Front. Biosci.9, 283–289 (2004). ArticleCAS Google Scholar
Martin, P. & Lewis, J. Actin cables and epidermal movement in embryonic wound healing. Nature360, 179–183 (1992). ArticleCAS Google Scholar
Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature453, 314–321 (2008). ArticleCAS Google Scholar
MacNeil, S. Progress and opportunities for tissue-engineered skin. Nature445, 874–880 (2007). ArticleCAS Google Scholar
Raja Sivamani, K., Garcia, M. S. & Isseroff, R. R. Wound re-epithelialization: Modulating keratinocyte migration in wound healing. Front. Biosci.12, 2849–2868 (2007). Article Google Scholar
Greaves, N. S., Iqbal, S. A., Baguneid, M. & Bayat, A. The role of skin substitutes in the management of chronic cutaneous wounds. Wound Repair Regen.21, 194–210 (2013). Article Google Scholar
Nelson, C. M. & Tien, J. Microstructured extracellular matrices in tissue engineering and development. Curr. Opin. Biotechnol.17, 518–523 (2006). ArticleCAS Google Scholar
Friedl, P. et al. Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res.55, 4557–4560 (1995). CAS Google Scholar
Rossier, O. M. et al. Force generated by actomyosin contraction builds bridges between adhesive contacts. EMBO J.29, 1055–1068 (2010). ArticleCAS Google Scholar
Doyle, A. D., Wang, F. W., Matsumoto, K. & Yamada, K. M. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol.184, 481–490 (2009). ArticleCAS Google Scholar
Borghi, N., Lowndes, M., Maruthamuthu, V., Gardel, M. L. & Nelson, W. J. Regulation of cell motile behaviour by crosstalk between cadherin- and integrin-mediated adhesions. Proc. Natl Acad. Sci. USA107, 13324–13329 (2010). ArticleCAS Google Scholar
Rosen, P. & Misfeldt, D. S. Cell density determines epithelial migration in culture. Proc. Natl Acad. Sci. USA77, 4760–4763 (1980). ArticleCAS Google Scholar
Trepat, X. et al. Physical forces during collective cell migration. Nature Phys.5, 426–430 (2009). ArticleCAS Google Scholar
Petitjean, L. et al. Velocity fields in a collectively migrating epithelium. Biophys. J.98, 1790–1800 (2010). ArticleCAS Google Scholar
Vedula, S. R. K. et al. Emerging modes of collective cell migration induced by geometrical constraints. Proc. Natl Acad. Sci. USA109, 12974–12979 (2012). ArticleCAS Google Scholar
Jamora, C. & Fuchs, E. Intercellular adhesion, signalling and the cytoskeleton. Nature Cell Biol.4, E101–E108 (2002). ArticleCAS Google Scholar
Theveneau, E. & Mayor, R. Cadherins in collective cell migration of mesenchymal cells. Curr. Opin. Cell Biol.24, 677–684 (2012). ArticleCAS Google Scholar
Sherer, N. M. & Mothes, W. Cytonemes and tunnelling nanotubules in cell–cell communication and viral pathogenesis. Trends Cell Biol.18, 414–420 (2008). ArticleCAS Google Scholar
Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science303, 1007–1010 (2004). ArticleCAS Google Scholar
Zani, B. G., Indolfi, L. & Edelman, E. R. Tubular bridges for bronchial epithelial cell migration and communication. PLoS ONE5, e8930 (2010). ArticleCAS Google Scholar
Ramirez-Weber, F. A. & Kornberg, T. B. Cytonemes: Cellular processes that project to the principal signalling centre in Drosophila imaginal discs. Cell97, 599–607 (1999). ArticleCAS Google Scholar
Bischofs, I. B., Klein, F., Lehnert, D., Bastmeyer, M. & Schwarz, U. S. Filamentous network mechanics and active contractility determine cell and tissue shape. Biophys. J.95, 3488–3496 (2008). ArticleCAS Google Scholar
Thery, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nature Cell Biol.7, 947–953 (2005). ArticleCAS Google Scholar
Hsu, H. J., Lee, C. F., Locke, A., Vanderzyl, S. Q. & Kaunas, R. Stretch-induced stress fibre remodelling and the activations of JNK and ERK depend on mechanical strain rate, but not FAK. PLoS ONE5, e12470 (2010). ArticleCAS Google Scholar
Kaunas, R., Nguyen, P., Usami, S. & Chien, S. Cooperative effects of Rho and mechanical stretch on stress fibre organization. Proc. Natl Acad. Sci. USA102, 15895–15900 (2005). ArticleCAS Google Scholar
Hirata, H., Tatsumi, H. & Sokabe, M. Dynamics of actin filaments during tension-dependent formation of actin bundles. Biochim. Biophys. Acta1770, 1115–1127 (2007). ArticleCAS Google Scholar
Anon, E. et al. Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proc. Natl Acad. Sci. USA109, 10891–10896 (2012). ArticleCAS Google Scholar
Millan, J. et al. Adherens junctions connect stress fibres between adjacent endothelial cells. BMC Biol.8, 11 (2010). ArticleCAS Google Scholar
Taguchi, K., Ishiuchi, T. & Takeichi, M. Mechanosensitive EPLIN-dependent remodelling of adherens junctions regulates epithelial reshaping. J. Cell Biol.194, 643–656 (2011). ArticleCAS Google Scholar
Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. _α_-Catenin as a tension transducer that induces adherens junction development. Nature Cell Biol.12, 533–542 (2010). ArticleCAS Google Scholar
Benjamin, J. M. et al. AlphaE-catenin regulates actin dynamics independently of cadherin-mediated cell–cell adhesion. J. Cell Biol.189, 339–352 (2010). ArticleCAS Google Scholar
Joanny, J. F. & de Gennes, P. G. A model for contact-angle hysteresis. J. Chem. Phys.81, 552–562 (1984). ArticleCAS Google Scholar
Landau, L. D. & Lifshitz, E. M. Theory of Elasticity Vol. 7, Ch. 13 (Pergamon, 1959). Google Scholar
Kobiela, T. et al. The influence of surfactants and hydrolyzed proteins on keratinocytes viability and elasticity. Skin Res. Technol.19, e200–e208 (2013). Article Google Scholar
Fung, C. K. et al. Quantitative analysis of human keratinocyte cell elasticity using atomic force microscopy (AFM). IEEE Trans. Nanobiosci.10, 9–15 (2011). Article Google Scholar
Lulevich, V., Yang, H. Y., Isseroff, R. R. & Liu, G. Y. Single cell mechanics of keratinocyte cells. Ultramicroscopy110, 1435–1442 (2010). ArticleCAS Google Scholar
Dembo, M. & Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J.76, 2307–2316 (1999). ArticleCAS Google Scholar
Mertz, A. F. et al. Scaling of traction forces with the size of cohesive cell colonies. Phys. Rev. Lett.108, 198101 (2012). ArticleCAS Google Scholar
Reffay, M. et al. Orientation and polarity in collectively migrating cell structures: Statics and dynamics. Biophys. J.100, 2566–2575 (2011). ArticleCAS Google Scholar
Leong, M. C., Vedula, S. R. K., Lim, C. T. & Ladoux, B. Geometrical constraints and physical crowding direct collective migration of fibroblasts. Commun. Integrative Biol.6, e23197 (2013). Article Google Scholar
Trichet, L. et al. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc. Natl Acad. Sci. USA109, 6933–6938 (2012). ArticleCAS Google Scholar
Weiss, P. & Matoltsy, A. G. Wound healing in chick embryos in vivo and in vitro. Dev. Biol.1, 302–326 (1959). Article Google Scholar
Belford, D. A. The mechanism of excisional fetal wound repair in vitro is responsive to growth factors. Endocrinology138, 3987–3996 (1997). ArticleCAS Google Scholar
Kratz, G. Modelling of wound healing processes in human skin using tissue culture. Microsc. Res. Tech.42, 345–350 (1998). ArticleCAS Google Scholar
Gautrot, J. E. et al. Mimicking normal tissue architecture and perturbation in cancer with engineered micro-epidermis. Biomaterials33, 5221–5229 (2012). ArticleCAS Google Scholar
Martin, P., Nobes, C., McCluskey, J. & Lewis, J. Repair of excisional wounds in the embryo. Eye8 (Pt 2), 155–160 (1994). Article Google Scholar
Grasso, S., Hernandez, J. A. & Chifflet, S. Roles of wound geometry, wound size, and extracellular matrix in the healing response of bovine corneal endothelial cells in culture. Am. J. Physiol. Cell Physiol.293, C1327–C1337 (2007). ArticleCAS Google Scholar
Wilcox, M., DiAntonio, A. & Leptin, M. The function of PS integrins in Drosophila wing morphogenesis. Development107, 891–897 (1989). CAS Google Scholar
Bokel, C. & Brown, N. H. Integrins in development: Moving on, responding to, and sticking to the extracellular matrix. Dev. Cell3, 311–321 (2002). ArticleCAS Google Scholar
DiPersio, C. M., Hodivala-Dilke, K. M., Jaenisch, R., Kreidberg, J. A. & Hynes, R. O. α3β1 Integrin is required for normal development of the epidermal basement membrane. J. Cell Biol.137, 729–742 (1997). ArticleCAS Google Scholar
Fink, J. et al. Comparative study and improvement of current cell micro-patterning techniques. Lab Chip7, 672–680 (2007). ArticleCAS Google Scholar
Mertz, A. F. et al. Cadherin-based intercellular adhesions organize epithelial cell-matrix traction forces. Proc. Natl Acad. Sci. USA110, 842–847 (2013). ArticleCAS Google Scholar
Yu, H., Xiong, S., Tay, C. Y., Leong, W. S. & Tan, L. P. A novel and simple microcontact printing technique for tacky, soft substrates and/or complex surfaces in soft tissue engineering. Acta Biomater.8, 1267–1272 (2012). ArticleCAS Google Scholar
Butler, J. P., Tolic-Norrelykke, I. M., Fabry, B. & Fredberg, J. J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol.282, C595–C605 (2002). ArticleCAS Google Scholar