Epithelial bridges maintain tissue integrity during collective cell migration (original) (raw)

References

  1. Diegelmann, R. F. & Evans, M. C. Wound healing: An overview of acute, fibrotic and delayed healing. Front. Biosci. 9, 283–289 (2004).
    Article CAS Google Scholar
  2. Martin, P. & Lewis, J. Actin cables and epidermal movement in embryonic wound healing. Nature 360, 179–183 (1992).
    Article CAS Google Scholar
  3. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).
    Article CAS Google Scholar
  4. MacNeil, S. Progress and opportunities for tissue-engineered skin. Nature 445, 874–880 (2007).
    Article CAS Google Scholar
  5. Raja Sivamani, K., Garcia, M. S. & Isseroff, R. R. Wound re-epithelialization: Modulating keratinocyte migration in wound healing. Front. Biosci. 12, 2849–2868 (2007).
    Article Google Scholar
  6. Greaves, N. S., Iqbal, S. A., Baguneid, M. & Bayat, A. The role of skin substitutes in the management of chronic cutaneous wounds. Wound Repair Regen. 21, 194–210 (2013).
    Article Google Scholar
  7. Nelson, C. M. & Tien, J. Microstructured extracellular matrices in tissue engineering and development. Curr. Opin. Biotechnol. 17, 518–523 (2006).
    Article CAS Google Scholar
  8. Friedl, P. et al. Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res. 55, 4557–4560 (1995).
    CAS Google Scholar
  9. Rossier, O. M. et al. Force generated by actomyosin contraction builds bridges between adhesive contacts. EMBO J. 29, 1055–1068 (2010).
    Article CAS Google Scholar
  10. Doyle, A. D., Wang, F. W., Matsumoto, K. & Yamada, K. M. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184, 481–490 (2009).
    Article CAS Google Scholar
  11. Borghi, N., Lowndes, M., Maruthamuthu, V., Gardel, M. L. & Nelson, W. J. Regulation of cell motile behaviour by crosstalk between cadherin- and integrin-mediated adhesions. Proc. Natl Acad. Sci. USA 107, 13324–13329 (2010).
    Article CAS Google Scholar
  12. Rosen, P. & Misfeldt, D. S. Cell density determines epithelial migration in culture. Proc. Natl Acad. Sci. USA 77, 4760–4763 (1980).
    Article CAS Google Scholar
  13. Trepat, X. et al. Physical forces during collective cell migration. Nature Phys. 5, 426–430 (2009).
    Article CAS Google Scholar
  14. Petitjean, L. et al. Velocity fields in a collectively migrating epithelium. Biophys. J. 98, 1790–1800 (2010).
    Article CAS Google Scholar
  15. Vedula, S. R. K. et al. Emerging modes of collective cell migration induced by geometrical constraints. Proc. Natl Acad. Sci. USA 109, 12974–12979 (2012).
    Article CAS Google Scholar
  16. Jamora, C. & Fuchs, E. Intercellular adhesion, signalling and the cytoskeleton. Nature Cell Biol. 4, E101–E108 (2002).
    Article CAS Google Scholar
  17. Theveneau, E. & Mayor, R. Cadherins in collective cell migration of mesenchymal cells. Curr. Opin. Cell Biol. 24, 677–684 (2012).
    Article CAS Google Scholar
  18. Sherer, N. M. & Mothes, W. Cytonemes and tunnelling nanotubules in cell–cell communication and viral pathogenesis. Trends Cell Biol. 18, 414–420 (2008).
    Article CAS Google Scholar
  19. Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004).
    Article CAS Google Scholar
  20. Zani, B. G., Indolfi, L. & Edelman, E. R. Tubular bridges for bronchial epithelial cell migration and communication. PLoS ONE 5, e8930 (2010).
    Article CAS Google Scholar
  21. Ramirez-Weber, F. A. & Kornberg, T. B. Cytonemes: Cellular processes that project to the principal signalling centre in Drosophila imaginal discs. Cell 97, 599–607 (1999).
    Article CAS Google Scholar
  22. Bischofs, I. B., Klein, F., Lehnert, D., Bastmeyer, M. & Schwarz, U. S. Filamentous network mechanics and active contractility determine cell and tissue shape. Biophys. J. 95, 3488–3496 (2008).
    Article CAS Google Scholar
  23. Thery, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nature Cell Biol. 7, 947–953 (2005).
    Article CAS Google Scholar
  24. Hsu, H. J., Lee, C. F., Locke, A., Vanderzyl, S. Q. & Kaunas, R. Stretch-induced stress fibre remodelling and the activations of JNK and ERK depend on mechanical strain rate, but not FAK. PLoS ONE 5, e12470 (2010).
    Article CAS Google Scholar
  25. Kaunas, R., Nguyen, P., Usami, S. & Chien, S. Cooperative effects of Rho and mechanical stretch on stress fibre organization. Proc. Natl Acad. Sci. USA 102, 15895–15900 (2005).
    Article CAS Google Scholar
  26. Hirata, H., Tatsumi, H. & Sokabe, M. Dynamics of actin filaments during tension-dependent formation of actin bundles. Biochim. Biophys. Acta 1770, 1115–1127 (2007).
    Article CAS Google Scholar
  27. Anon, E. et al. Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proc. Natl Acad. Sci. USA 109, 10891–10896 (2012).
    Article CAS Google Scholar
  28. Millan, J. et al. Adherens junctions connect stress fibres between adjacent endothelial cells. BMC Biol. 8, 11 (2010).
    Article CAS Google Scholar
  29. Taguchi, K., Ishiuchi, T. & Takeichi, M. Mechanosensitive EPLIN-dependent remodelling of adherens junctions regulates epithelial reshaping. J. Cell Biol. 194, 643–656 (2011).
    Article CAS Google Scholar
  30. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. _α_-Catenin as a tension transducer that induces adherens junction development. Nature Cell Biol. 12, 533–542 (2010).
    Article CAS Google Scholar
  31. Benjamin, J. M. et al. AlphaE-catenin regulates actin dynamics independently of cadherin-mediated cell–cell adhesion. J. Cell Biol. 189, 339–352 (2010).
    Article CAS Google Scholar
  32. Joanny, J. F. & de Gennes, P. G. A model for contact-angle hysteresis. J. Chem. Phys. 81, 552–562 (1984).
    Article CAS Google Scholar
  33. Landau, L. D. & Lifshitz, E. M. Theory of Elasticity Vol. 7, Ch. 13 (Pergamon, 1959).
    Google Scholar
  34. Kobiela, T. et al. The influence of surfactants and hydrolyzed proteins on keratinocytes viability and elasticity. Skin Res. Technol. 19, e200–e208 (2013).
    Article Google Scholar
  35. Fung, C. K. et al. Quantitative analysis of human keratinocyte cell elasticity using atomic force microscopy (AFM). IEEE Trans. Nanobiosci. 10, 9–15 (2011).
    Article Google Scholar
  36. Lulevich, V., Yang, H. Y., Isseroff, R. R. & Liu, G. Y. Single cell mechanics of keratinocyte cells. Ultramicroscopy 110, 1435–1442 (2010).
    Article CAS Google Scholar
  37. Dembo, M. & Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).
    Article CAS Google Scholar
  38. Mertz, A. F. et al. Scaling of traction forces with the size of cohesive cell colonies. Phys. Rev. Lett. 108, 198101 (2012).
    Article CAS Google Scholar
  39. Reffay, M. et al. Orientation and polarity in collectively migrating cell structures: Statics and dynamics. Biophys. J. 100, 2566–2575 (2011).
    Article CAS Google Scholar
  40. Leong, M. C., Vedula, S. R. K., Lim, C. T. & Ladoux, B. Geometrical constraints and physical crowding direct collective migration of fibroblasts. Commun. Integrative Biol. 6, e23197 (2013).
    Article Google Scholar
  41. Trichet, L. et al. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc. Natl Acad. Sci. USA 109, 6933–6938 (2012).
    Article CAS Google Scholar
  42. Weiss, P. & Matoltsy, A. G. Wound healing in chick embryos in vivo and in vitro. Dev. Biol. 1, 302–326 (1959).
    Article Google Scholar
  43. Belford, D. A. The mechanism of excisional fetal wound repair in vitro is responsive to growth factors. Endocrinology 138, 3987–3996 (1997).
    Article CAS Google Scholar
  44. Kratz, G. Modelling of wound healing processes in human skin using tissue culture. Microsc. Res. Tech. 42, 345–350 (1998).
    Article CAS Google Scholar
  45. Gautrot, J. E. et al. Mimicking normal tissue architecture and perturbation in cancer with engineered micro-epidermis. Biomaterials 33, 5221–5229 (2012).
    Article CAS Google Scholar
  46. Martin, P., Nobes, C., McCluskey, J. & Lewis, J. Repair of excisional wounds in the embryo. Eye 8 (Pt 2), 155–160 (1994).
    Article Google Scholar
  47. Grasso, S., Hernandez, J. A. & Chifflet, S. Roles of wound geometry, wound size, and extracellular matrix in the healing response of bovine corneal endothelial cells in culture. Am. J. Physiol. Cell Physiol. 293, C1327–C1337 (2007).
    Article CAS Google Scholar
  48. Wilcox, M., DiAntonio, A. & Leptin, M. The function of PS integrins in Drosophila wing morphogenesis. Development 107, 891–897 (1989).
    CAS Google Scholar
  49. Bokel, C. & Brown, N. H. Integrins in development: Moving on, responding to, and sticking to the extracellular matrix. Dev. Cell 3, 311–321 (2002).
    Article CAS Google Scholar
  50. DiPersio, C. M., Hodivala-Dilke, K. M., Jaenisch, R., Kreidberg, J. A. & Hynes, R. O. α3β1 Integrin is required for normal development of the epidermal basement membrane. J. Cell Biol. 137, 729–742 (1997).
    Article CAS Google Scholar
  51. Fink, J. et al. Comparative study and improvement of current cell micro-patterning techniques. Lab Chip 7, 672–680 (2007).
    Article CAS Google Scholar
  52. Sveen, J. K. MatPIV—the PIV toolbox for MATLAB. http://folk.uio.no/jks/matpiv/Download/ (2006).
  53. Mertz, A. F. et al. Cadherin-based intercellular adhesions organize epithelial cell-matrix traction forces. Proc. Natl Acad. Sci. USA 110, 842–847 (2013).
    Article CAS Google Scholar
  54. Yu, H., Xiong, S., Tay, C. Y., Leong, W. S. & Tan, L. P. A novel and simple microcontact printing technique for tacky, soft substrates and/or complex surfaces in soft tissue engineering. Acta Biomater. 8, 1267–1272 (2012).
    Article CAS Google Scholar
  55. Butler, J. P., Tolic-Norrelykke, I. M., Fabry, B. & Fredberg, J. J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282, C595–C605 (2002).
    Article CAS Google Scholar

Download references