Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks (original) (raw)
References
Lee, K. & Hubbell, J. A. Tissue, cell and engineering. Curr. Opin. Biotechnol.24, 827–829 (2013). ArticleCAS Google Scholar
Guvendiren, M. & Burdick, J. A. Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr. Opin. Biotechnol.24, 841–846 (2013). ArticleCAS Google Scholar
Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science324, 1673–1677 (2009). ArticleCAS Google Scholar
Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater.9, 518–526 (2010). ArticleCAS Google Scholar
Wade, R. J. & Burdick, J. A. Engineering ECM signals into biomaterials. Mater. Today15, 454–459 (October, 2012). ArticleCAS Google Scholar
Alijotas-Reig, J., Fernández-Figueras, M. T. & Puig, L. Late-onset inflammatory adverse reactions related to soft tissue filler injections. Clin. Rev. Allergy Immunol.45, 97–108 (2013). ArticleCAS Google Scholar
Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA100, 5413–5418 (2003). ArticleCAS Google Scholar
Galler, K. M., Aulisa, L., Regan, K. R., D’Souza, R. N. & Hartgerink, J. D. Self-assembling multidomain peptide hydrogels: Designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading. J. Am. Chem. Soc.132, 3217–3223 (2010). ArticleCAS Google Scholar
Wang, D-A. et al. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nature Mater.6, 385–392 (2007). ArticleCAS Google Scholar
Kong, H. J., Kaigler, D., Kim, K. & Mooney, D. J. Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules5, 1720–1727 (2004). ArticleCAS Google Scholar
Burdick, J. A., Chung, C., Jia, X., Randolph, M. A. & Langer, R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules6, 386–391 (2005). ArticleCAS Google Scholar
Madden, L. R. et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl Acad. Sci. USA107, 15211–15216 (2010). Article Google Scholar
Stachowiak, A. N., Bershteyn, A., Tzatzalos, E. & Irvine, D. J. Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties. Adv. Mater.17, 399–403 (2005). ArticleCAS Google Scholar
Gorgieva, S. & Kokol, V. Preparation, characterization, and in vitro enzymatic degradation of chitosan-gelatine hydrogel scaffolds as potential biomaterials. J. Biomed. Mater. Res. A100, 1655–1667 (2012). ArticleCAS Google Scholar
Sokic, S., Christenson, M., Larson, J. & Papavasiliou, G. In situ generation of cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching. Macromol. Biosci.14, 731–739 (2014). ArticleCAS Google Scholar
Hosokawa, K., Fujii, T. & Endo, I. Handling of picoliter liquid samples in a poly(dimethylsiloxane)-based microfluidic device. Anal. Chem.71, 4781–4785 (1999). ArticleCAS Google Scholar
Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using ‘flow focusing’ in microchannels. Appl. Phys. Lett.82, 364–366 (2003). ArticleCAS Google Scholar
Kawakatsu, T., Kikuchi, Y. & Nakajima, M. Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J. Am. Oil Chem. Soc.74, 317–321 (1997). ArticleCAS Google Scholar
Li, C. Y., Wood, D. K., Hsu, C. M. & Bhatia, S. N. DNA-templated assembly of droplet-derived PEG microtissues. Lab Chip11, 2967–2975 (2011). ArticleCAS Google Scholar
Du, Y., Lo, E., Ali, S. & Khademhosseini, A. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl Acad. Sci. USA105, 9522–9527 (2008). Article Google Scholar
Qi, H. et al. DNA-directed self-assembly of shape-controlled hydrogels. Nature Commun.4, 2275 (2013). ArticleCAS Google Scholar
Jgamadze, D. et al. Colloids as mobile substrates for the implantation and integration of differentiated neurons into the mammalian brain. PLoS ONE7, e30293 (2012). ArticleCAS Google Scholar
Pautot, S., Wyart, C. & Isacoff, E. Y. Colloid-guided assembly of oriented 3D neuronal networks. Nature Methods5, 735–740 (2008). ArticleCAS Google Scholar
Dunne, M., Corrigan, O. I. & Ramtoola, Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials21, 1659–1668 (2000). ArticleCAS Google Scholar
Chen, H. et al. Hydrogel-thickened microemulsion for topical administration of drug molecule at an extremely low concentration. Int. J. Pharm.341, 78–84 (2007). ArticleCAS Google Scholar
Conchouso, D., Castro, D., Khan, S. A. & Foulds, I. G. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions. Lab Chip14, 3011–3020 (2014). ArticleCAS Google Scholar
Griffin, D. R. et al. Hybrid photopatterned enzymatic reaction (HyPER) for in situ cell manipulation. ChemBioChem15, 233–242 (2014). ArticleCAS Google Scholar
Schense, J. C. & Hubbell, J. A. Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug. Chem.10, 75–81 (1999). ArticleCAS Google Scholar
Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnol.23, 47–55 (2005). ArticleCAS Google Scholar
Chen, E. J., Novakofski, J., Jenkins, W. K. & O’Brien, J. W. D. Young’s modulus measurements of soft tissues with application to elasticity imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control43, 191–194 (1996). Article Google Scholar
Cheng, S. & Bilston, L. E. Unconfined compression of white matter. J. Biomech.40, 117–124 (2007). Article Google Scholar
Parker, K. J., Huang, S. R., Musulin, R. A. & Lerner, R. M. Tissue response to mechanical vibrations for ‘sonoelasticity imaging’. Ultrasound Med. Biol.16, 241–246 (1990). ArticleCAS Google Scholar
Samani, A., Bishop, J., Luginbuhl, C. & Plewes, D. B. Measuring the elastic modulus of ex vivo small tissue samples. Phys. Med. Biol.48, 2183–2198 (2003). Article Google Scholar
Yeh, W-C. et al. Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med. Biol.28, 467–474 (2002). Article Google Scholar
Galiano, R. D., Michaels, J., Dobryansky, M., Levine, J. P. & Gurtner, G. C. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen.12, 485–492 (2004). Article Google Scholar
Fukano, Y. et al. Characterization of an in vitro model for evaluating the interface between skin and percutaneous biomaterials. Wound Repair Regen.14, 484–491 (2006). Article Google Scholar
Fukano, Y. et al. Epidermal and dermal integration into sphere-templated porous poly(2-hydroxyethyl methacrylate) implants in mice. J. Biomed. Mater. Res. A94A, 1172–1186 (2010). CAS Google Scholar
Wang, H-M. et al. Novel biodegradable porous scaffold applied to skin regeneration. PLoS ONE8, e56330 (2013). ArticleCAS Google Scholar
Wang, X., Ge, J., Tredget, E. E. & Wu, Y. The mouse excisional wound splinting model, including applications for stem cell transplantation. Nature Protoc.8, 302–309 (2013). ArticleCAS Google Scholar
Ota, T. et al. Notch signaling may be involved in the abnormal differentiation of epidermal keratinocytes in psoriasis. Acta Histochem. Cytochem.47, 175–183 (2014). ArticleCAS Google Scholar
Bramfeld, H., Sabra, G., Centis, V. & Vermette, P. Scaffold vascularization: A challenge for three-dimensional tissue engineering. Curr. Med. Chem.17, 3944–3967 (2010). Article Google Scholar
Hollister, S. J. Porous scaffold design for tissue engineering. Nature Mater.4, 518–524 (2005). ArticleCAS Google Scholar
Yang, S., Leong, K-F., Du, Z. & Chua, C-K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng.7, 679–689 (2001). ArticleCAS Google Scholar
Peters, M. C., Polverini, P. J. & Mooney, D. J. Engineering vascular networks in porous polymer matrices. J. Biomed. Mater. Res.60, 668–678 (2002). ArticleCAS Google Scholar
Winkler, E. A., Bell, R. D. & Zlokovic, B. V. Pericyte-specific expression of PDGFβ receptor in mouse models with normal and deficient PDGFβ receptor signaling. Mol. Neurodegener.5, 32 (2010). ArticleCAS Google Scholar
Huang, F-J. et al. Pericyte deficiencies lead to aberrant tumor vascularizaton in the brain of the NG2 null mouse. Dev. Biol.344, 1035–1046 (2010). ArticleCAS Google Scholar
Stratman, A. N., Malotte, K. M., Mahan, R. D., Davis, M. J. & Davis, G. E. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood114, 5091–5101 (2009). ArticleCAS Google Scholar
Rustad, K. C. et al. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials33, 80–90 (2012). ArticleCAS Google Scholar
Richardson, T. P., Peters, M. C., Ennett, A. B. & Mooney, D. J. Polymeric system for dual growth factor delivery. Nature Biotechnol.19, 1029–1034 (2001). ArticleCAS Google Scholar
Sun, G. et al. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc. Natl Acad. Sci. USA108, 20976–20981 (2011). Article Google Scholar
Tokatlian, T., Cam, C. & Segura, T. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model. Adv. Healthc. Mater. (2015) 10.1002/adhm.201400783
Liang, W. et al. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation. Lab. Invest.94, 491–502 (2014). ArticleCAS Google Scholar
Latger-Cannard, V., Besson, I., Doco-Lecompte, T. & Lecompte, T. A standardized procedure for quantitation of CD11b on polymorphonuclear neutrophil by flow cytometry: Potential application in infectious diseases. Clin. Lab. Haematol.26, 177–186 (2004). ArticleCAS Google Scholar
Lucas, T. et al. Differential roles of macrophages in diverse phases of skin repair. J. Immunol.184, 3964–3977 (2010). ArticleCAS Google Scholar