Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks (original) (raw)

References

  1. Lee, K. & Hubbell, J. A. Tissue, cell and engineering. Curr. Opin. Biotechnol. 24, 827–829 (2013).
    Article CAS Google Scholar
  2. Guvendiren, M. & Burdick, J. A. Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr. Opin. Biotechnol. 24, 841–846 (2013).
    Article CAS Google Scholar
  3. Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).
    Article CAS Google Scholar
  4. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater. 9, 518–526 (2010).
    Article CAS Google Scholar
  5. Wade, R. J. & Burdick, J. A. Engineering ECM signals into biomaterials. Mater. Today 15, 454–459 (October, 2012).
    Article CAS Google Scholar
  6. Alijotas-Reig, J., Fernández-Figueras, M. T. & Puig, L. Late-onset inflammatory adverse reactions related to soft tissue filler injections. Clin. Rev. Allergy Immunol. 45, 97–108 (2013).
    Article CAS Google Scholar
  7. Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).
    Article CAS Google Scholar
  8. Galler, K. M., Aulisa, L., Regan, K. R., D’Souza, R. N. & Hartgerink, J. D. Self-assembling multidomain peptide hydrogels: Designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading. J. Am. Chem. Soc. 132, 3217–3223 (2010).
    Article CAS Google Scholar
  9. Wang, D-A. et al. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nature Mater. 6, 385–392 (2007).
    Article CAS Google Scholar
  10. Kong, H. J., Kaigler, D., Kim, K. & Mooney, D. J. Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules 5, 1720–1727 (2004).
    Article CAS Google Scholar
  11. Burdick, J. A., Chung, C., Jia, X., Randolph, M. A. & Langer, R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6, 386–391 (2005).
    Article CAS Google Scholar
  12. Madden, L. R. et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl Acad. Sci. USA 107, 15211–15216 (2010).
    Article Google Scholar
  13. Stachowiak, A. N., Bershteyn, A., Tzatzalos, E. & Irvine, D. J. Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties. Adv. Mater. 17, 399–403 (2005).
    Article CAS Google Scholar
  14. Gorgieva, S. & Kokol, V. Preparation, characterization, and in vitro enzymatic degradation of chitosan-gelatine hydrogel scaffolds as potential biomaterials. J. Biomed. Mater. Res. A 100, 1655–1667 (2012).
    Article CAS Google Scholar
  15. Sokic, S., Christenson, M., Larson, J. & Papavasiliou, G. In situ generation of cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching. Macromol. Biosci. 14, 731–739 (2014).
    Article CAS Google Scholar
  16. Hosokawa, K., Fujii, T. & Endo, I. Handling of picoliter liquid samples in a poly(dimethylsiloxane)-based microfluidic device. Anal. Chem. 71, 4781–4785 (1999).
    Article CAS Google Scholar
  17. Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using ‘flow focusing’ in microchannels. Appl. Phys. Lett. 82, 364–366 (2003).
    Article CAS Google Scholar
  18. Kawakatsu, T., Kikuchi, Y. & Nakajima, M. Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J. Am. Oil Chem. Soc. 74, 317–321 (1997).
    Article CAS Google Scholar
  19. Li, C. Y., Wood, D. K., Hsu, C. M. & Bhatia, S. N. DNA-templated assembly of droplet-derived PEG microtissues. Lab Chip 11, 2967–2975 (2011).
    Article CAS Google Scholar
  20. Du, Y., Lo, E., Ali, S. & Khademhosseini, A. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl Acad. Sci. USA 105, 9522–9527 (2008).
    Article Google Scholar
  21. Qi, H. et al. DNA-directed self-assembly of shape-controlled hydrogels. Nature Commun. 4, 2275 (2013).
    Article CAS Google Scholar
  22. Jgamadze, D. et al. Colloids as mobile substrates for the implantation and integration of differentiated neurons into the mammalian brain. PLoS ONE 7, e30293 (2012).
    Article CAS Google Scholar
  23. Pautot, S., Wyart, C. & Isacoff, E. Y. Colloid-guided assembly of oriented 3D neuronal networks. Nature Methods 5, 735–740 (2008).
    Article CAS Google Scholar
  24. Dunne, M., Corrigan, O. I. & Ramtoola, Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 21, 1659–1668 (2000).
    Article CAS Google Scholar
  25. Chen, H. et al. Hydrogel-thickened microemulsion for topical administration of drug molecule at an extremely low concentration. Int. J. Pharm. 341, 78–84 (2007).
    Article CAS Google Scholar
  26. Conchouso, D., Castro, D., Khan, S. A. & Foulds, I. G. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions. Lab Chip 14, 3011–3020 (2014).
    Article CAS Google Scholar
  27. Griffin, D. R. et al. Hybrid photopatterned enzymatic reaction (HyPER) for in situ cell manipulation. ChemBioChem 15, 233–242 (2014).
    Article CAS Google Scholar
  28. Schense, J. C. & Hubbell, J. A. Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug. Chem. 10, 75–81 (1999).
    Article CAS Google Scholar
  29. Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnol. 23, 47–55 (2005).
    Article CAS Google Scholar
  30. Chen, E. J., Novakofski, J., Jenkins, W. K. & O’Brien, J. W. D. Young’s modulus measurements of soft tissues with application to elasticity imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 191–194 (1996).
    Article Google Scholar
  31. Cheng, S. & Bilston, L. E. Unconfined compression of white matter. J. Biomech. 40, 117–124 (2007).
    Article Google Scholar
  32. Parker, K. J., Huang, S. R., Musulin, R. A. & Lerner, R. M. Tissue response to mechanical vibrations for ‘sonoelasticity imaging’. Ultrasound Med. Biol. 16, 241–246 (1990).
    Article CAS Google Scholar
  33. Samani, A., Bishop, J., Luginbuhl, C. & Plewes, D. B. Measuring the elastic modulus of ex vivo small tissue samples. Phys. Med. Biol. 48, 2183–2198 (2003).
    Article Google Scholar
  34. Yeh, W-C. et al. Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med. Biol. 28, 467–474 (2002).
    Article Google Scholar
  35. Galiano, R. D., Michaels, J., Dobryansky, M., Levine, J. P. & Gurtner, G. C. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen. 12, 485–492 (2004).
    Article Google Scholar
  36. Fukano, Y. et al. Characterization of an in vitro model for evaluating the interface between skin and percutaneous biomaterials. Wound Repair Regen. 14, 484–491 (2006).
    Article Google Scholar
  37. Fukano, Y. et al. Epidermal and dermal integration into sphere-templated porous poly(2-hydroxyethyl methacrylate) implants in mice. J. Biomed. Mater. Res. A 94A, 1172–1186 (2010).
    CAS Google Scholar
  38. Wang, H-M. et al. Novel biodegradable porous scaffold applied to skin regeneration. PLoS ONE 8, e56330 (2013).
    Article CAS Google Scholar
  39. Wang, X., Ge, J., Tredget, E. E. & Wu, Y. The mouse excisional wound splinting model, including applications for stem cell transplantation. Nature Protoc. 8, 302–309 (2013).
    Article CAS Google Scholar
  40. Ota, T. et al. Notch signaling may be involved in the abnormal differentiation of epidermal keratinocytes in psoriasis. Acta Histochem. Cytochem. 47, 175–183 (2014).
    Article CAS Google Scholar
  41. Bramfeld, H., Sabra, G., Centis, V. & Vermette, P. Scaffold vascularization: A challenge for three-dimensional tissue engineering. Curr. Med. Chem. 17, 3944–3967 (2010).
    Article Google Scholar
  42. Hollister, S. J. Porous scaffold design for tissue engineering. Nature Mater. 4, 518–524 (2005).
    Article CAS Google Scholar
  43. Yang, S., Leong, K-F., Du, Z. & Chua, C-K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7, 679–689 (2001).
    Article CAS Google Scholar
  44. Peters, M. C., Polverini, P. J. & Mooney, D. J. Engineering vascular networks in porous polymer matrices. J. Biomed. Mater. Res. 60, 668–678 (2002).
    Article CAS Google Scholar
  45. Winkler, E. A., Bell, R. D. & Zlokovic, B. V. Pericyte-specific expression of PDGFβ receptor in mouse models with normal and deficient PDGFβ receptor signaling. Mol. Neurodegener. 5, 32 (2010).
    Article CAS Google Scholar
  46. Huang, F-J. et al. Pericyte deficiencies lead to aberrant tumor vascularizaton in the brain of the NG2 null mouse. Dev. Biol. 344, 1035–1046 (2010).
    Article CAS Google Scholar
  47. Stratman, A. N., Malotte, K. M., Mahan, R. D., Davis, M. J. & Davis, G. E. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114, 5091–5101 (2009).
    Article CAS Google Scholar
  48. Rustad, K. C. et al. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials 33, 80–90 (2012).
    Article CAS Google Scholar
  49. Richardson, T. P., Peters, M. C., Ennett, A. B. & Mooney, D. J. Polymeric system for dual growth factor delivery. Nature Biotechnol. 19, 1029–1034 (2001).
    Article CAS Google Scholar
  50. Sun, G. et al. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc. Natl Acad. Sci. USA 108, 20976–20981 (2011).
    Article Google Scholar
  51. Tokatlian, T., Cam, C. & Segura, T. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model. Adv. Healthc. Mater. (2015) 10.1002/adhm.201400783
  52. Liang, W. et al. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation. Lab. Invest. 94, 491–502 (2014).
    Article CAS Google Scholar
  53. Latger-Cannard, V., Besson, I., Doco-Lecompte, T. & Lecompte, T. A standardized procedure for quantitation of CD11b on polymorphonuclear neutrophil by flow cytometry: Potential application in infectious diseases. Clin. Lab. Haematol. 26, 177–186 (2004).
    Article CAS Google Scholar
  54. Lucas, T. et al. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 184, 3964–3977 (2010).
    Article CAS Google Scholar

Download references