Discher, D. E., Janmey, P. & Wang, Y. Tissue cells feel and respond to the stiffness of their substrate. Science310, 1139–1143 (2005). CAS Google Scholar
Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: A growing role for contractility. Nature Rev. Mol. Cell Biol.10, 34–43 (2009). CAS Google Scholar
Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nature Rev. Mol. Cell Biol.10, 63–73 (2009). ArticleCAS Google Scholar
Pelham, R. J. & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA94, 13661–13665 (1997). CAS Google Scholar
Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton60, 24–34 (2005). Google Scholar
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell126, 677–689 (2006). CAS Google Scholar
Engler, A. et al. Substrate compliance versus ligand density in cell on gel responses. Biophys. J.86, 617–628 (2004). CAS Google Scholar
Pedersen, J. A. & Swartz, M. A. Mechanobiology in the third dimension. Ann. Biomed. Eng.33, 1469–1490 (2005). Google Scholar
Pathak, A. & Kumar, S. Biophysical regulation of tumor cell invasion: Moving beyond matrix stiffness. Integr. Biol.3, 267–278 (2011). CAS Google Scholar
Baker, B. M. & Chen, C. S. Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues. J. Cell Sci.125, 3015–3024 (2012). CAS Google Scholar
Van Dijk-Wolthuis, W. N. E. et al. Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran. Macromolecules28, 6317–6322 (1995). CAS Google Scholar
Yang, L. et al. Micromechanical bending of single collagen fibrils using atomic force microscopy. J. Biomed. Mater. Res.82A, 160–168 (2007). CAS Google Scholar
Kluge, D., Abraham, F., Schmidt, S., Schmidt, H.-W. & Fery, A. Nanomechanical properties of supramolecular self-assembled whiskers determined by AFM force mapping. Langmuir26, 3020–3023 (2010). CAS Google Scholar
Guthold, M. et al. A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers. Cell Biochem. Biophys.49, 165–181 (2007). CAS Google Scholar
Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nature Mater.11, 642–649 (2012). CAS Google Scholar
Knight, C. G. et al. The collagen-binding A-domains of integrins α1β1 and α2β1 recognize the same specific amino acid sequence, GFOGER, in native (triple–helical) collagens. J. Biol. Chem.275, 35–40 (2000). CAS Google Scholar
Konitsiotis, A. D. et al. Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen. J. Biol. Chem.283, 6861–6868 (2008). CAS Google Scholar
Zhong, C. et al. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol.141, 539–551 (1998). CAS Google Scholar
Klotzsch, E. et al. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc. Natl Acad. Sci. USA106, 18267–18272 (2009). CAS Google Scholar
Grinnell, F., Ho, C.-H., Tamariz, E., Lee, D. J. & Skuta, G. Dendritic fibroblasts in three-dimensional collagen matrices. Mol. Biol. Cell14, 384–395 (2003). CAS Google Scholar
Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater.9, 518–526 (2010). CAS Google Scholar
Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature Mater.12, 458–465 (2013). CAS Google Scholar
Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science294, 1708–1712 (2001). CAS Google Scholar
Hakkinen, K. M., Harunaga, J. S., Doyle, A. D. & Yamada, K. M. Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng. Part A17, 713–724 (2010). Google Scholar
Fraley, S. I. et al. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nature Cell Biol.12, 598–604 (2010). CAS Google Scholar
Kubow, K. E. & Horwitz, A. R. Reducing background fluorescence reveals adhesions in 3D matrices. Nature Cell Biol.13, 5–7 (2011). Google Scholar
Stopak, D. & Harris, A. K. Connective tissue morphogenesis by fibroblast traction: I. Tissue culture observations. Dev. Biol.90, 383–398 (1982). CAS Google Scholar
Ma, X. et al. Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys. J.104, 1410–1418 (2013). CAS Google Scholar
Guo, C.-L. et al. Long-range mechanical force enables self-assembly of epithelial tubular patterns. Proc. Natl Acad. Sci. USA109, 5576–5582 (2012). CAS Google Scholar
Shi, Q. et al. Rapid disorganization of mechanically interacting systems of mammary acini. Proc. Natl Acad. Sci. USA111, 658–663 (2014). CAS Google Scholar
Provenzano, P. et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med.4, 38 (2006). Google Scholar
Grinnell, F. & Lamke, C. R. Reorganization of hydrated collagen lattices by human skin fibroblasts. J. Cell Sci.66, 51–63 (1984). CAS Google Scholar
Tomasek, J. J., Haaksma, C. J., Eddy, R. J. & Vaughan, M. B. Fibroblast contraction occurs on release of tension in attached collagen lattices: Dependency on an organized actin cytoskeleton and serum. Anat. Rec.232, 359–368 (1992). CAS Google Scholar
Kolodney, M. S. & Elson, E. L. Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts. J. Biol. Chem.268, 23850–23855 (1993). CAS Google Scholar
Mih, J. D., Marinkovic, A., Liu, F., Sharif, A. S. & Tschumperlin, D. J. Matrix stiffness reverses the effect of actomyosin tension on cell proliferation. J. Cell Sci.125, 5974–5983 (2012). CAS Google Scholar
Wang, H.-B., Dembo, M. & Wang, Y.-L. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Phys.279, C1345–C1350 (2000). CAS Google Scholar
Wang, L.-S., Boulaire, J., Chan, P. P. Y., Chung, J. E. & Kurisawa, M. The role of stiffness of gelatin–hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials31, 8608–8616 (2010). CAS Google Scholar
Cavalcanti-Adam, E. A. et al. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J.92, 2964–2974 (2007). CAS Google Scholar
Chan, C. E. & Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science322, 1687–1691 (2008). CAS Google Scholar
Yang, M. T., Sniadecki, N. J. & Chen, C. S. Geometric considerations of micro- to nanoscale elastomeric post arrays to study cellular traction forces. Adv. Mater.19, 3119–3123 (2007). CAS Google Scholar
Balaban, N. Q. et al. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nature Cell Biol.3, 466–472 (2001). CAS Google Scholar
Chen, C. S., Alonso, J. L., Ostuni, E., Whitesides, G. M. & Ingber, D. E. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun.307, 355–361 (2003). CAS Google Scholar
Pasapera, A. M., Schneider, I. C., Rericha, E., Schlaepfer, D. D. & Waterman, C. M. Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol.188, 877–890 (2010). CAS Google Scholar
Slack-Davis, J. K. et al. Cellular characterization of a novel focal adhesion kinase inhibitor. J. Biol. Chem.282, 14845–14852 (2007). CAS Google Scholar
Houseman, B. T. & Mrksich, M. The microenvironment of immobilized Arg-Gly-Asp peptides is an important determinant of cell adhesion. Biomaterials22, 943–955 (2001). CAS Google Scholar
Arnold, M. et al. Activation of integrin function by nanopatterned adhesive interfaces. Chem. Phys. Chem.5, 383–388 (2004). CAS Google Scholar
Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nature Commun.6, 6365 (2015). CAS Google Scholar
Fratzl, P. Collagen: Structure and Mechanics (Springer Science and Business Media, 2008). Google Scholar
Gautieri, A., Vesentini, S., Redaelli, A. & Buehler, M. J. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett.11, 757–766 (2011). CAS Google Scholar
Elosegui-Artola, A. et al. Rigidity sensing and adaptation through regulation of integrin types. Nature Mater.13, 631–637 (2014). CAS Google Scholar
Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell88, 39–48 (1997). CAS Google Scholar
Fu, J. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nature Methods7, 733–736 (2010). CAS Google Scholar
Sander, E. A., Stylianopoulos, T., Tranquillo, R. T. & Barocas, V. H. Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels. Proc. Natl Acad. Sci. USA106, 17675–17680 (2009). CAS Google Scholar
Abhilash, A. S., Baker, B. M., Trappmann, B., Chen, C. S. & Shenoy, V. B. Remodeling of fibrous extracellular matrices by contractile cells: Predictions from discrete fiber network simulations. Biophys. J.107, 1829–1840 (2014). CAS Google Scholar
Walcott, S. & Sun, S. X. A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells. Proc. Natl Acad. Sci. USA107, 7757–7762 (2010). CAS Google Scholar
Besser, A. & Safran, S. A. Force-induced adsorption and anisotropic growth of focal adhesions. Biophys. J.90, 3469–3484 (2006). CAS Google Scholar
Kidoaki, S., Kwon, I. K. & Matsuda, T. Structural features and mechanical properties of _in situ_-bonded meshes of segmented polyurethane electrospun from mixed solvents. J. Biomed. Mater. Res.76B, 219–229 (2006). CAS Google Scholar
Kuntz, R. M. & Saltzman, W. M. Neutrophil motility in extracellular matrix gels: Mesh size and adhesion affect speed of migration. Biophys. J.72, 1472–1480 (1997). CAS Google Scholar