Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments (original) (raw)

References

  1. Discher, D. E., Janmey, P. & Wang, Y. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).
    CAS Google Scholar
  2. Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: A growing role for contractility. Nature Rev. Mol. Cell Biol. 10, 34–43 (2009).
    CAS Google Scholar
  3. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nature Rev. Mol. Cell Biol. 10, 63–73 (2009).
    Article CAS Google Scholar
  4. Pelham, R. J. & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).
    CAS Google Scholar
  5. Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60, 24–34 (2005).
    Google Scholar
  6. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).
    CAS Google Scholar
  7. Engler, A. et al. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86, 617–628 (2004).
    CAS Google Scholar
  8. Pedersen, J. A. & Swartz, M. A. Mechanobiology in the third dimension. Ann. Biomed. Eng. 33, 1469–1490 (2005).
    Google Scholar
  9. Pathak, A. & Kumar, S. Biophysical regulation of tumor cell invasion: Moving beyond matrix stiffness. Integr. Biol. 3, 267–278 (2011).
    CAS Google Scholar
  10. Baker, B. M. & Chen, C. S. Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).
    CAS Google Scholar
  11. Van Dijk-Wolthuis, W. N. E. et al. Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran. Macromolecules 28, 6317–6322 (1995).
    CAS Google Scholar
  12. Yang, L. et al. Micromechanical bending of single collagen fibrils using atomic force microscopy. J. Biomed. Mater. Res. 82A, 160–168 (2007).
    CAS Google Scholar
  13. Kluge, D., Abraham, F., Schmidt, S., Schmidt, H.-W. & Fery, A. Nanomechanical properties of supramolecular self-assembled whiskers determined by AFM force mapping. Langmuir 26, 3020–3023 (2010).
    CAS Google Scholar
  14. Guthold, M. et al. A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers. Cell Biochem. Biophys. 49, 165–181 (2007).
    CAS Google Scholar
  15. Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nature Mater. 11, 642–649 (2012).
    CAS Google Scholar
  16. Knight, C. G. et al. The collagen-binding A-domains of integrins α1β1 and α2β1 recognize the same specific amino acid sequence, GFOGER, in native (triple–helical) collagens. J. Biol. Chem. 275, 35–40 (2000).
    CAS Google Scholar
  17. Konitsiotis, A. D. et al. Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen. J. Biol. Chem. 283, 6861–6868 (2008).
    CAS Google Scholar
  18. Zhong, C. et al. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol. 141, 539–551 (1998).
    CAS Google Scholar
  19. Klotzsch, E. et al. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc. Natl Acad. Sci. USA 106, 18267–18272 (2009).
    CAS Google Scholar
  20. Grinnell, F., Ho, C.-H., Tamariz, E., Lee, D. J. & Skuta, G. Dendritic fibroblasts in three-dimensional collagen matrices. Mol. Biol. Cell 14, 384–395 (2003).
    CAS Google Scholar
  21. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater. 9, 518–526 (2010).
    CAS Google Scholar
  22. Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature Mater. 12, 458–465 (2013).
    CAS Google Scholar
  23. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).
    CAS Google Scholar
  24. Hakkinen, K. M., Harunaga, J. S., Doyle, A. D. & Yamada, K. M. Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng. Part A 17, 713–724 (2010).
    Google Scholar
  25. Fraley, S. I. et al. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nature Cell Biol. 12, 598–604 (2010).
    CAS Google Scholar
  26. Kubow, K. E. & Horwitz, A. R. Reducing background fluorescence reveals adhesions in 3D matrices. Nature Cell Biol. 13, 5–7 (2011).
    Google Scholar
  27. Stopak, D. & Harris, A. K. Connective tissue morphogenesis by fibroblast traction: I. Tissue culture observations. Dev. Biol. 90, 383–398 (1982).
    CAS Google Scholar
  28. Ma, X. et al. Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys. J. 104, 1410–1418 (2013).
    CAS Google Scholar
  29. Guo, C.-L. et al. Long-range mechanical force enables self-assembly of epithelial tubular patterns. Proc. Natl Acad. Sci. USA 109, 5576–5582 (2012).
    CAS Google Scholar
  30. Shi, Q. et al. Rapid disorganization of mechanically interacting systems of mammary acini. Proc. Natl Acad. Sci. USA 111, 658–663 (2014).
    CAS Google Scholar
  31. Provenzano, P. et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4, 38 (2006).
    Google Scholar
  32. Grinnell, F. & Lamke, C. R. Reorganization of hydrated collagen lattices by human skin fibroblasts. J. Cell Sci. 66, 51–63 (1984).
    CAS Google Scholar
  33. Tomasek, J. J., Haaksma, C. J., Eddy, R. J. & Vaughan, M. B. Fibroblast contraction occurs on release of tension in attached collagen lattices: Dependency on an organized actin cytoskeleton and serum. Anat. Rec. 232, 359–368 (1992).
    CAS Google Scholar
  34. Kolodney, M. S. & Elson, E. L. Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts. J. Biol. Chem. 268, 23850–23855 (1993).
    CAS Google Scholar
  35. Mih, J. D., Marinkovic, A., Liu, F., Sharif, A. S. & Tschumperlin, D. J. Matrix stiffness reverses the effect of actomyosin tension on cell proliferation. J. Cell Sci. 125, 5974–5983 (2012).
    CAS Google Scholar
  36. Wang, H.-B., Dembo, M. & Wang, Y.-L. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Phys. 279, C1345–C1350 (2000).
    CAS Google Scholar
  37. Wang, L.-S., Boulaire, J., Chan, P. P. Y., Chung, J. E. & Kurisawa, M. The role of stiffness of gelatin–hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials 31, 8608–8616 (2010).
    CAS Google Scholar
  38. Cavalcanti-Adam, E. A. et al. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 92, 2964–2974 (2007).
    CAS Google Scholar
  39. Chan, C. E. & Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science 322, 1687–1691 (2008).
    CAS Google Scholar
  40. Yang, M. T., Sniadecki, N. J. & Chen, C. S. Geometric considerations of micro- to nanoscale elastomeric post arrays to study cellular traction forces. Adv. Mater. 19, 3119–3123 (2007).
    CAS Google Scholar
  41. Balaban, N. Q. et al. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001).
    CAS Google Scholar
  42. Chen, C. S., Alonso, J. L., Ostuni, E., Whitesides, G. M. & Ingber, D. E. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307, 355–361 (2003).
    CAS Google Scholar
  43. Pasapera, A. M., Schneider, I. C., Rericha, E., Schlaepfer, D. D. & Waterman, C. M. Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188, 877–890 (2010).
    CAS Google Scholar
  44. Slack-Davis, J. K. et al. Cellular characterization of a novel focal adhesion kinase inhibitor. J. Biol. Chem. 282, 14845–14852 (2007).
    CAS Google Scholar
  45. Houseman, B. T. & Mrksich, M. The microenvironment of immobilized Arg-Gly-Asp peptides is an important determinant of cell adhesion. Biomaterials 22, 943–955 (2001).
    CAS Google Scholar
  46. Arnold, M. et al. Activation of integrin function by nanopatterned adhesive interfaces. Chem. Phys. Chem. 5, 383–388 (2004).
    CAS Google Scholar
  47. Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nature Commun. 6, 6365 (2015).
    CAS Google Scholar
  48. Fratzl, P. Collagen: Structure and Mechanics (Springer Science and Business Media, 2008).
    Google Scholar
  49. Gautieri, A., Vesentini, S., Redaelli, A. & Buehler, M. J. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11, 757–766 (2011).
    CAS Google Scholar
  50. Elosegui-Artola, A. et al. Rigidity sensing and adaptation through regulation of integrin types. Nature Mater. 13, 631–637 (2014).
    CAS Google Scholar
  51. Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88, 39–48 (1997).
    CAS Google Scholar
  52. Fu, J. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nature Methods 7, 733–736 (2010).
    CAS Google Scholar
  53. Sander, E. A., Stylianopoulos, T., Tranquillo, R. T. & Barocas, V. H. Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels. Proc. Natl Acad. Sci. USA 106, 17675–17680 (2009).
    CAS Google Scholar
  54. Abhilash, A. S., Baker, B. M., Trappmann, B., Chen, C. S. & Shenoy, V. B. Remodeling of fibrous extracellular matrices by contractile cells: Predictions from discrete fiber network simulations. Biophys. J. 107, 1829–1840 (2014).
    CAS Google Scholar
  55. Walcott, S. & Sun, S. X. A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells. Proc. Natl Acad. Sci. USA 107, 7757–7762 (2010).
    CAS Google Scholar
  56. Besser, A. & Safran, S. A. Force-induced adsorption and anisotropic growth of focal adhesions. Biophys. J. 90, 3469–3484 (2006).
    CAS Google Scholar
  57. Kidoaki, S., Kwon, I. K. & Matsuda, T. Structural features and mechanical properties of _in situ_-bonded meshes of segmented polyurethane electrospun from mixed solvents. J. Biomed. Mater. Res. 76B, 219–229 (2006).
    CAS Google Scholar
  58. Kuntz, R. M. & Saltzman, W. M. Neutrophil motility in extracellular matrix gels: Mesh size and adhesion affect speed of migration. Biophys. J. 72, 1472–1480 (1997).
    CAS Google Scholar

Download references