Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling (original) (raw)
References
Goldman, S. Stem and progenitor cell–based therapy of the human central nervous system. Nat. Biotechnol.23, 862–871 (2005). CAS Google Scholar
Chen, K. G., Mallon, B. S., McKay, R. D. G. & Robey, P. G. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell14, 13–26 (2014). CAS Google Scholar
Anderson, A. J., Piltti, K. M., Hooshmand, M. J., Nishi, R. A. & Cummings, B. J. Preclinical efficacy failure of human CNS-derived stem cells for use in the pathway study of cervical spinal cord injury. Stem Cell Rep.8, 249–263 (2017). Google Scholar
Marsh, S. E. et al. HuCNS-SC human NSCs fail to differentiate, form ectopic clusters, and provide no cognitive benefits in a transgenic model of Alzheimer’s disease. Stem Cell Rep.8, 235–248 (2017). CAS Google Scholar
Azarin, S. M. & Palecek, S. P. Matrix revolutions: a trinity of defined substrates for long-term expansion of human ESCs. Cell Stem Cell7, 7–8 (2010). CAS Google Scholar
Dzhoyashvili, N. A., Shen, S. & Rochev, Y. A. Natural and synthetic materials for self-renewal, long-term maintenance, and differentiation of induced pluripotent stem cells. Adv. Healthc. Mater.4, 2342–2359 (2015). CAS Google Scholar
Lutolf, M. P., Doyonnas, R., Havenstrite, K., Koleckar, K. & Blau, H. M. Perturbation of single hematopoietic stem cell fates in artificial niches. Integr. Biol.1, 59–69 (2009). CAS Google Scholar
Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science329, 1078–1081 (2010). ArticleCAS Google Scholar
McDevitt, T. C. Scalable culture of human pluripotent stem cells in 3D. Proc. Natl Acad. Sci. USA110, 20852–20853 (2013). CAS Google Scholar
Lei, Y. & Schaffer, D. V. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc. Natl Acad. Sci. USA110, E5039–E5048 (2013). CAS Google Scholar
Siti-Ismail, N., Bishop, A. E., Polak, J. M. & Mantalaris, A. The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials29, 3946–3952 (2008). CAS Google Scholar
Gerecht, S. et al. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Natl Acad. Sci. USA104, 11298–11303 (2007). CAS Google Scholar
Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell132, 598–611 (2008). CAS Google Scholar
Keung, A. J., Kumar, S. & Schaffer, D. V. Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. Annu. Rev. Cell Dev. Biol.26, 533–556 (2010). CAS Google Scholar
Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science324, 1673–1677 (2009). CAS Google Scholar
Little, L., Healy, K. E. & Schaffer, D. Engineering biomaterials for synthetic neural stem cell microenvironments. Chem. Rev.108, 1787–1796 (2008). CAS Google Scholar
Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater.13, 645–652 (2014). CAS Google Scholar
Shi, P., Shen, K., Ghassemi, S., Hone, J. & Kam, L. C. Dynamic force generation by neural stem cells. Cell. Mol. Bioeng.2, 464–474 (2009). CAS Google Scholar
Gershlak, J. R. et al. Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development. Biochem. Biophys. Res. Commun.439, 161–166 (2013). CAS Google Scholar
Saha, K. et al. Substrate modulus directs neural stem cell behavior. Biophys. J.95, 4426–4438 (2008). CAS Google Scholar
Keung, A. J., de Juan-Pardo, E. M., Schaffer, D. V. & Kumar, S. Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells29, 1886–1897 (2011). CAS Google Scholar
Teixeira, A. I. et al. The promotion of neuronal maturation on soft substrates. Biomaterials30, 4567–4572 (2009). CAS Google Scholar
Leipzig, N. D. & Shoichet, M. S. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials30, 6867–6878 (2009). CAS Google Scholar
Banerjee, A. et al. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials30, 4695–4699 (2009). CAS Google Scholar
Baker, B. M. & Chen, C. S. Deconstructing the third dimension—How 3D culture microenvironments alter cellular cues. J. Cell Sci.125, 3015–3024 (2012). CAS Google Scholar
Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater.15, 326–334 (2016). CAS Google Scholar
Patel, P. N., Gobin, A. S., West, J. L. & Patrick, C. W. Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation. Tissue Eng.11, 1498–1505 (2005). CAS Google Scholar
Bott, K. et al. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials31, 8454–8464 (2010). CAS Google Scholar
Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater.12, 458–465 (2013). CAS Google Scholar
Saha, K., Irwin, E. F., Kozhukh, J., Schaffer, D. V. & Healy, K. E. Biomimetic interfacial interpenetrating polymer networks control neural stem cell behavior. J. Biomed. Mater. Res. A81A, 240–249 (2007). CAS Google Scholar
Mithieux, S. M. & Weiss, A. S. Elastin. Adv. Protein Chem.70, 437–461 (2005). CAS Google Scholar
Chung, C., Lampe, K. J. & Heilshorn, S. C. Tetrakis(hydroxymethyl) phosphonium chloride as a covalent cross-linking agent for cell encapsulation within protein-based hydrogels. Biomacromolecules13, 3912–3916 (2012). CAS Google Scholar
McKay, R. Stem cells in the central nervous system. Science276, 66–71 (1997). CAS Google Scholar
Ahmed, S. The culture of neural stem cells. J. Cell. Biochem.106, 1–6 (2009). CAS Google Scholar
Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater.9, 518–526 (2010). CAS Google Scholar
Tong, X. & Yang, F. Sliding hydrogels with mobile molecular ligands and crosslinks as 3D stem cell niche. Adv. Mater.28, 7257–7263 (2016). CAS Google Scholar
Vincent, L. G. & Engler, A. J. Stem cell differentiation: Post-degradation forces kick in. Nat. Mater.12, 384–386 (2013). CAS Google Scholar
Gefen, A. & Margulies, S. S. Are in vivo and in situ brain tissues mechanically similar? J. Biomech.37, 1339–1352 (2004). Google Scholar
Taylor, Z. & Miller, K. Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus. J. Biomech.37, 1263–1269 (2004). Google Scholar
Lim, T. C., Toh, W. S., Wang, L.-S., Kurisawa, M. & Spector, M. The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells. Biomaterials33, 3446–3455 (2012). CAS Google Scholar
Zhang, J. et al. Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of β-catenin signaling. Dev. Cell18, 472–479 (2010). CAS Google Scholar
Karpowicz, P. et al. E-cadherin regulates neural stem cell self-renewal. J. Neurosci.29, 3885–3896 (2009). CAS Google Scholar
Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science297, 365–369 (2002). CAS Google Scholar
Straley, K. S. & Heilshorn, S. C. Independent tuning of multiple biomaterial properties using protein engineering. Soft Matter5, 114–124 (2009). CAS Google Scholar
Wang, H., Cai, L., Paul, A., Enejder, A. & Heilshorn, S. C. Hybrid elastin-like polypeptide–polyethylene glycol (ELP-PEG) hydrogels with improved transparency and independent control of matrix mechanics and cell ligand density. Biomacromolecules15, 3421–3428 (2014). CAS Google Scholar
Enejder, A., Brackmann, C. & Svedberg, F. Coherent anti-Stokes Raman scattering microscopy of cellular lipid storage. IEEE J. Sel. Top. Quantum Electron.16, 506–515 (2010). CAS Google Scholar
Chung, C., Pruitt, B. L. & Heilshorn, S. C. Spontaneous cardiomyocyte differentiation of mouse embryoid bodies regulated by hydrogel crosslink density. Biomater. Sci.1, 1082–1090 (2013). CAS Google Scholar
Jönsson, P., Jonsson, M. P., Tegenfeldt, J. O. & Höök, F. A method improving the accuracy of fluorescence recovery after photobleaching analysis. Biophys. J.95, 5334–5348 (2008). Google Scholar
Babu, H., Cheung, G., Kettenmann, H., Palmer, T. D. & Kempermann, G. Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons. PLoS ONE2, e388 (2007). Google Scholar
Madl, C. M., Katz, L. M. & Heilshorn, S. C. Bio-orthogonally crosslinked, engineered protein hydrogels with tunable mechanics and biochemistry for cell encapsulation. Adv. Funct. Mater.26, 3612–3620 (2016). CAS Google Scholar
Neef, A. B. & Luedtke, N. W. Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proc. Natl Acad. Sci. USA108, 20404–20409 (2011). CAS Google Scholar
Salic, A. & Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl Acad. Sci. USA105, 2415–2420 (2008). CAS Google Scholar
DiMarco, R. L., Dewi, R. E., Bernal, G., Kuo, C. & Heilshorn, S. C. Protein-engineered scaffolds for in vitro 3D culture of primary adult intestinal organoids. Biomater. Sci.3, 1376–1385 (2015). CAS Google Scholar
Moullan, N. et al. Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep.10, 1681–1691 (2015). CAS Google Scholar
Roghani, M. et al. Metalloprotease-disintegrin MDC9: intracellular maturation and catalytic activity. J. Biol. Chem.274, 3531–3540 (1999). CAS Google Scholar
Moss, M. L., Rasmussen, F. H., Nudelman, R., Dempsey, P. J. & Williams, J. Fluorescent substrates useful as high throughput screening tools for ADAM9. Comb. Chem. High Throughput Screen.13, 358–365 (2010). CAS Google Scholar
Lutolf, M. P., Raeber, G. P., Zisch, A. H., Tirelli, N. & Hubbell, J. A. Cell-responsive synthetic hydrogels. Adv. Mater.15, 888–892 (2003). CAS Google Scholar
Rowley, J. A., Madlambayan, G. & Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials20, 45–53 (1999). CAS Google Scholar
Desai, R. M., Koshy, S. T., Hilderbrand, S. A., Mooney, D. J. & Joshi, N. S. Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry. Biomaterials50, 30–37 (2015). CAS Google Scholar
Romano, N. H., Madl, C. M. & Heilshorn, S. C. Matrix RGD ligand density and L1CAM-mediated Schwann cell interactions synergistically enhance neurite outgrowth. Acta Biomater.11, 48–57 (2015). CAS Google Scholar