Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing (original) (raw)
Paigen, K. & Petkov, P. Mammalian recombination hot spots: properties, control and evolution. Nat. Rev. Genet.11, 221–233 (2010). ArticleCAS Google Scholar
Jackson, S.P. & Bartek, J. The DNA-damage response in human biology and disease. Nature461, 1071–1078 (2009). ArticleCAS Google Scholar
Branzei, D. & Foiani, M. Maintaining genome stability at the replication fork. Nat. Rev. Mol. Cell Biol.11, 208–219 (2010). ArticleCAS Google Scholar
Branzei, D. & Foiani, M. The DNA damage response during DNA replication. Curr. Opin. Cell Biol.17, 568–575 (2005). ArticleCAS Google Scholar
Szilard, R.K. et al. Systematic identification of fragile sites via genome-wide location analysis of gamma-H2AX. Nat. Struct. Mol. Biol.17, 299–305 (2010). ArticleCAS Google Scholar
Harrigan, J.A. et al. Replication stress induces 53BP1-containing OPT domains in G1 cells. J. Cell Biol.193, 97–108 (2011). ArticleCAS Google Scholar
Seo, J. et al. Genome-wide profiles of H2AX and -H2AX differentiate endogenous and exogenous DNA damage hotspots in human cells. Nucleic Acids Res.40, 5965–5974 (2012). ArticleCAS Google Scholar
Marti, T.M., Hefner, E., Feeney, L., Natale, V. & Cleaver, J.E. H2AX phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks. Proc. Natl. Acad. Sci. USA103, 9891–9896 (2006). ArticleCAS Google Scholar
Tuduri, S. et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat. Cell Biol.11, 1315–1324 (2009). ArticleCAS Google Scholar
Chadwick, B.P. & Lane, T.F. BRCA1 associates with the inactive X chromosome in late S-phase, coupled with transient H2AX phosphorylation. Chromosoma114, 432–439 (2005). ArticleCAS Google Scholar
Iacovoni, J.S. et al. High-resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome. EMBO J.29, 1446–1457 (2010). ArticleCAS Google Scholar
Bunting, S.F. et al. 53BP1 inhibits homologous recombination in _Brca1_-deficient cells by blocking resection of DNA breaks. Cell141, 243–254 (2010). ArticleCAS Google Scholar
Bothmer, A. et al. 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination. J. Exp. Med.207, 855–865 (2010). ArticleCAS Google Scholar
Hakim, O. et al. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature484, 69–74 (2012). ArticleCAS Google Scholar
Blitzblau, H.G., Bell, G.W., Rodriguez, J., Bell, S.P. & Hochwagen, A. Mapping of meiotic single-stranded DNA reveals double-stranded-break hotspots near centromeres and telomeres. Curr. Biol.17, 2003–2012 (2007). ArticleCAS Google Scholar
Feng, W. et al. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat. Cell Biol.8, 148–155 (2006). ArticleCAS Google Scholar
Feng, W., Bachant, J., Collingwood, D., Raghuraman, M.K. & Brewer, B.J. Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress. Genetics183, 1249–1260 (2009). ArticleCAS Google Scholar
Leduc, F. et al. Genome-wide mapping of DNA strand breaks. PLoS ONE6, e17353 (2011). ArticleCAS Google Scholar
Dudley, D.D., Chaudhuri, J., Bassing, C.H. & Alt, F.W. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv. Immunol.86, 43–112 (2005). ArticleCAS Google Scholar
Sfeir, A.J., Chai, W., Shay, J.W. & Wright, W.E. Telomere-end processing the terminal nucleotides of human chromosomes. Mol. Cell18, 131–138 (2005). ArticleCAS Google Scholar
Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet.42, 301–334 (2008). ArticleCAS Google Scholar
Casper, A.M., Nghiem, P., Arlt, M.F. & Glover, T.W. ATR regulates fragile site stability. Cell111, 779–789 (2002). ArticleCAS Google Scholar
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc., B57, 289–300 (1995). Google Scholar
Smit, A. & Hubley, R. RepeatMasker Open v.3.0 〈http://www.repeatmasker.org/〉 (Institute for Systems Biology, Seattle, 1996–2004).
Zhang, H. & Freudenreich, C.H. An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol. Cell27, 367–379 (2007). Article Google Scholar
Kim, N. & Jinks-Robertson, S. Transcription as a source of genome instability. Nat. Rev. Genet.13, 204–214 (2012). ArticleCAS Google Scholar
Helmrich, A., Ballarino, M. & Tora, L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell44, 966–977 (2011). ArticleCAS Google Scholar
Halazonetis, T.D., Gorgoulis, V.G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science319, 1352–1355 (2008). ArticleCAS Google Scholar
Negrini, S., Gorgoulis, V.G. & Halazonetis, T.D. Genomic instability—an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol.11, 220–228 (2010). ArticleCAS Google Scholar
De, S. & Michor, F. DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes. Nat. Biotechnol.29, 1103–1108 (2011). ArticleCAS Google Scholar
Futreal, P.A. et al. A census of human cancer genes. Nat. Rev. Cancer4, 177–183 (2004). ArticleCAS Google Scholar
Santarius, T., Shipley, J., Brewer, D., Stratton, M.R. & Cooper, C.S. A census of amplified and overexpressed human cancer genes. Nat. Rev. Cancer10, 59–64 (2010). ArticleCAS Google Scholar
Ng, S.B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature461, 272–276 (2009). ArticleCAS Google Scholar
Altshuler, D. et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature407, 513–516 (2000). ArticleCAS Google Scholar
Chiarle, R. et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell147, 107–119 (2011). ArticleCAS Google Scholar
Crosetto, N. et al. Human Wrnip1 is localized in replication factories in a ubiquitin-binding zinc finger-dependent manner. J. Biol. Chem.283, 35173–35185 (2008). ArticleCAS Google Scholar
Tyteca, S., Vandromme, M., Legube, G., Chevillard-Briet, M. & Trouche, D. Tip60 and p400 are both required for UV-induced apoptosis but play antagonistic roles in cell cycle progression. EMBO J.25, 1680–1689 (2006). ArticleCAS Google Scholar
Schmittgen, T.D. & Livak, K.J. Analyzing real-time PCR data by the comparative _C_T method. Nat. Protoc.3, 1101–1108 (2008). ArticleCAS Google Scholar
Fujita, P.A. et al. The UCSC Genome Browser database: update 2011. Nucleic Acids Res.39, D876–D882 (2011). ArticleCAS Google Scholar
Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature463, 899–905 (2010). ArticleCAS Google Scholar