Three-dimensional force microscopy of cells in biopolymer networks (original) (raw)
References
Friedl, P., Zanker, K.S. & Brocker, E.B. Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc. Res. Tech.43, 369–378 (1998). ArticleCAS Google Scholar
Zaman, M.H. et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. USA103, 10889–10894 (2006). ArticleCAS Google Scholar
Friedl, P. & Wolf, K. Proteolytic interstitial cell migration: a five-step process. Cancer Metastasis Rev.28, 129–135 (2009). Article Google Scholar
Friedl, P., Wolf, K. & Lammerding, J. Nuclear mechanics during cell migration. Curr. Opin. Cell Biol.23, 55–64 (2011). ArticleCAS Google Scholar
Koch, T.M., Muenster, S., Bonakdar, N., Buttler, J.P. & Fabry, B. 3D traction forces in cancer cell invasion. PLoS ONE7, e33476 (2012). ArticleCAS Google Scholar
Lämmermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature453, 51–55 (2008). Article Google Scholar
Dembo, M. & Wang, Y.L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J.76, 2307–2316 (1999). ArticleCAS Google Scholar
Butler, J.P., Tolic-Norrelykke, I.M., Fabry, B. & Fredberg, J.J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol.282, C595–C605 (2002). ArticleCAS Google Scholar
Sabass, B., Gardel, M.L., Waterman, C.M. & Schwarz, U.S. High resolution traction force microscopy based on experimental and computational advances. Biophys. J.94, 207–220 (2008). ArticleCAS Google Scholar
Legant, W.R. et al. Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc. Natl. Acad. Sci. USA110, 881–886 (2013). ArticleCAS Google Scholar
Legant, W.R. et al. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods7, 969–971 (2010). ArticleCAS Google Scholar
Arevalo, R.C., Urbach, J.S. & Blair, D.L. Size-dependent rheology of type-I collagen networks. Biophys. J.99, L65–L67 (2010). ArticleCAS Google Scholar
Münster, S. et al. Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proc. Natl. Acad. Sci. USA110, 12197–12202 (2013). Article Google Scholar
Voytik-Harbin, S.L., Roeder, B.A., Sturgis, J.E., Kokini, K. & Robinson, J.P. Simultaneous mechanical loading and confocal reflection microscopy for three-dimensional microbiomechanical analysis of biomaterials and tissue constructs. Microsc. Microanal.9, 74–85 (2003). ArticleCAS Google Scholar
Vader, D., Kabla, A., Weitz, D. & Mahadevan, L. Strain-induced alignment in collagen gels. PLoS ONE4, e5902 (2009). Article Google Scholar
Roeder, B.A., Kokini, K. & Voytik-Harbin, S.L. Fibril microstructure affects strain transmission within collagen extracellular matrices. J. Biomech. Eng.131, 031004 (2009). Article Google Scholar
Brown, A.E., Litvinov, R.I., Discher, D.E., Purohit, P.K. & Weisel, J.W. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science325, 741–744 (2009). ArticleCAS Google Scholar
Onck, P.R., Koeman, T., van Dillen, T. & van der Giessen, E. Alternative explanation of stiffening in cross-linked semiflexible networks. Phys. Rev. Lett.95, 178102 (2005). ArticleCAS Google Scholar
Heussinger, C., Schaefer, B. & Frey, E. Nonaffine rubber elasticity for stiff polymer networks. Phys. Rev. E76, 031906 (2007). Article Google Scholar
Stein, A.M., Vader, D.A., Weitz, D.A. & Sander, L.M. The micromechanics of three-dimensional collagen-I gels. Complexity16, 22–28 (2011). Article Google Scholar
Sheinman, M., Broedersz, C.P. & MacKintosh, F.C. Nonlinear effective-medium theory of disordered spring networks. Phys. Rev. E85, 021801 (2012). ArticleCAS Google Scholar
Stylianopoulos, T. & Barocas, V.H. Volume-averaging theory for the study of the mechanics of collagen networks. Comput. Methods Appl. Mech. Eng.196, 2981–2990 (2007). Article Google Scholar
Licup, A.J. et al. Stress controls the mechanics of collagen networks. Proc. Natl. Acad. Sci. USA112, 9573–9578 (2015). ArticleCAS Google Scholar
Kraning-Rush, C.M., Carey, S.P., Califano, J.P., Smith, B.N. & Reinhart-King, C.A. The role of the cytoskeleton in cellular force generation in 2D and 3D environments. Phys. Biol.8, 015009 (2011). Article Google Scholar
Lautscham, L.A. et al. Migration in confined 3D environments is determined by a combination of adhesiveness, nuclear volume, contractility, and cell stiffness. Biophys. J.109, 900–913 (2015). ArticleCAS Google Scholar
Lang, N.R. et al. Estimating the 3D pore size distribution of biopolymer networks from directionally biased data. Biophys. J.105, 1967–1975 (2013). ArticleCAS Google Scholar
Metzner, C. et al. Superstatistical analysis and modelling of heterogeneous random walks. Nat. Commun.6, 7516 (2015). ArticleCAS Google Scholar
Mickel, W. et al. Robust pore size analysis of filamentous networks from 3D confocal microscopy. Biophys. J.95, 6072–6080 (2008). ArticleCAS Google Scholar
Pelham, R.J. Jr. & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA94, 13661–13665 (1997). ArticleCAS Google Scholar
Engler, A. et al. Substrate compliance versus ligand density in cell on gel responses. Biophys. J.86, 617–628 (2004). ArticleCAS Google Scholar
Reinhart-King, C.A., Dembo, M. & Hammer, D.A. The dynamics and mechanics of endothelial cell spreading. Biophys. J.89, 676–689 (2005). ArticleCAS Google Scholar
Bonakdar, N. et al. Biomechanical characterization of a desminopathy in primary human myoblasts. Biochem. Biophys. Res. Commun.419, 703–707 (2012). ArticleCAS Google Scholar
Faust, U. et al. Cyclic stress at mHz frequencies aligns fibroblasts in direction of zero strain. PLoS ONE6, e28963 (2011). ArticleCAS Google Scholar
Kollmannsberger, P. & Fabry, B. High-force magnetic tweezers with force feedback for biological applications. Rev. Sci. Instrum.78, 114301 (2007). Article Google Scholar
Nelder, J.A. & Mead, R. A simplex method for function minimization. Comput. J.7, 308–313 (1965). Article Google Scholar
Tikhonov, A.N. Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics Doklady4, 1035–1038 (1963). Google Scholar
Hersch, N. et al. The constant beat: cardiomyocytes adapt their forces by equal contraction upon environmental stiffening. Biol. Open2, 351–361 (2013). ArticleCAS Google Scholar