Three-dimensional force microscopy of cells in biopolymer networks (original) (raw)

References

  1. Friedl, P., Zanker, K.S. & Brocker, E.B. Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc. Res. Tech. 43, 369–378 (1998).
    Article CAS Google Scholar
  2. Zaman, M.H. et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. USA 103, 10889–10894 (2006).
    Article CAS Google Scholar
  3. Friedl, P. & Wolf, K. Proteolytic interstitial cell migration: a five-step process. Cancer Metastasis Rev. 28, 129–135 (2009).
    Article Google Scholar
  4. Friedl, P., Wolf, K. & Lammerding, J. Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23, 55–64 (2011).
    Article CAS Google Scholar
  5. Koch, T.M., Muenster, S., Bonakdar, N., Buttler, J.P. & Fabry, B. 3D traction forces in cancer cell invasion. PLoS ONE 7, e33476 (2012).
    Article CAS Google Scholar
  6. Lämmermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).
    Article Google Scholar
  7. Dembo, M. & Wang, Y.L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).
    Article CAS Google Scholar
  8. Butler, J.P., Tolic-Norrelykke, I.M., Fabry, B. & Fredberg, J.J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282, C595–C605 (2002).
    Article CAS Google Scholar
  9. Sabass, B., Gardel, M.L., Waterman, C.M. & Schwarz, U.S. High resolution traction force microscopy based on experimental and computational advances. Biophys. J. 94, 207–220 (2008).
    Article CAS Google Scholar
  10. Legant, W.R. et al. Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc. Natl. Acad. Sci. USA 110, 881–886 (2013).
    Article CAS Google Scholar
  11. Legant, W.R. et al. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods 7, 969–971 (2010).
    Article CAS Google Scholar
  12. Storm, C., Pastore, J.J., MacKintosh, F.C., Lubensky, T.C. & Janmey, P.A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).
    Article CAS Google Scholar
  13. Arevalo, R.C., Urbach, J.S. & Blair, D.L. Size-dependent rheology of type-I collagen networks. Biophys. J. 99, L65–L67 (2010).
    Article CAS Google Scholar
  14. Münster, S. et al. Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proc. Natl. Acad. Sci. USA 110, 12197–12202 (2013).
    Article Google Scholar
  15. Voytik-Harbin, S.L., Roeder, B.A., Sturgis, J.E., Kokini, K. & Robinson, J.P. Simultaneous mechanical loading and confocal reflection microscopy for three-dimensional microbiomechanical analysis of biomaterials and tissue constructs. Microsc. Microanal. 9, 74–85 (2003).
    Article CAS Google Scholar
  16. Vader, D., Kabla, A., Weitz, D. & Mahadevan, L. Strain-induced alignment in collagen gels. PLoS ONE 4, e5902 (2009).
    Article Google Scholar
  17. Roeder, B.A., Kokini, K. & Voytik-Harbin, S.L. Fibril microstructure affects strain transmission within collagen extracellular matrices. J. Biomech. Eng. 131, 031004 (2009).
    Article Google Scholar
  18. Brown, A.E., Litvinov, R.I., Discher, D.E., Purohit, P.K. & Weisel, J.W. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325, 741–744 (2009).
    Article CAS Google Scholar
  19. Onck, P.R., Koeman, T., van Dillen, T. & van der Giessen, E. Alternative explanation of stiffening in cross-linked semiflexible networks. Phys. Rev. Lett. 95, 178102 (2005).
    Article CAS Google Scholar
  20. Heussinger, C., Schaefer, B. & Frey, E. Nonaffine rubber elasticity for stiff polymer networks. Phys. Rev. E 76, 031906 (2007).
    Article Google Scholar
  21. Stein, A.M., Vader, D.A., Weitz, D.A. & Sander, L.M. The micromechanics of three-dimensional collagen-I gels. Complexity 16, 22–28 (2011).
    Article Google Scholar
  22. Sheinman, M., Broedersz, C.P. & MacKintosh, F.C. Nonlinear effective-medium theory of disordered spring networks. Phys. Rev. E 85, 021801 (2012).
    Article CAS Google Scholar
  23. Stylianopoulos, T. & Barocas, V.H. Volume-averaging theory for the study of the mechanics of collagen networks. Comput. Methods Appl. Mech. Eng. 196, 2981–2990 (2007).
    Article Google Scholar
  24. Licup, A.J. et al. Stress controls the mechanics of collagen networks. Proc. Natl. Acad. Sci. USA 112, 9573–9578 (2015).
    Article CAS Google Scholar
  25. Kraning-Rush, C.M., Carey, S.P., Califano, J.P., Smith, B.N. & Reinhart-King, C.A. The role of the cytoskeleton in cellular force generation in 2D and 3D environments. Phys. Biol. 8, 015009 (2011).
    Article Google Scholar
  26. Lautscham, L.A. et al. Migration in confined 3D environments is determined by a combination of adhesiveness, nuclear volume, contractility, and cell stiffness. Biophys. J. 109, 900–913 (2015).
    Article CAS Google Scholar
  27. Lang, N.R. et al. Estimating the 3D pore size distribution of biopolymer networks from directionally biased data. Biophys. J. 105, 1967–1975 (2013).
    Article CAS Google Scholar
  28. Metzner, C. et al. Superstatistical analysis and modelling of heterogeneous random walks. Nat. Commun. 6, 7516 (2015).
    Article CAS Google Scholar
  29. Mickel, W. et al. Robust pore size analysis of filamentous networks from 3D confocal microscopy. Biophys. J. 95, 6072–6080 (2008).
    Article CAS Google Scholar
  30. Pelham, R.J. Jr. & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94, 13661–13665 (1997).
    Article CAS Google Scholar
  31. Engler, A. et al. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86, 617–628 (2004).
    Article CAS Google Scholar
  32. Reinhart-King, C.A., Dembo, M. & Hammer, D.A. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89, 676–689 (2005).
    Article CAS Google Scholar
  33. Bonakdar, N. et al. Biomechanical characterization of a desminopathy in primary human myoblasts. Biochem. Biophys. Res. Commun. 419, 703–707 (2012).
    Article CAS Google Scholar
  34. Faust, U. et al. Cyclic stress at mHz frequencies aligns fibroblasts in direction of zero strain. PLoS ONE 6, e28963 (2011).
    Article CAS Google Scholar
  35. Kollmannsberger, P. & Fabry, B. High-force magnetic tweezers with force feedback for biological applications. Rev. Sci. Instrum. 78, 114301 (2007).
    Article Google Scholar
  36. Nelder, J.A. & Mead, R. A simplex method for function minimization. Comput. J. 7, 308–313 (1965).
    Article Google Scholar
  37. Huber, P.J. Robust Statistics (John Wiley & Sons, 1981).
  38. Tikhonov, A.N. Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics Doklady 4, 1035–1038 (1963).
    Google Scholar
  39. Hersch, N. et al. The constant beat: cardiomyocytes adapt their forces by equal contraction upon environmental stiffening. Biol. Open 2, 351–361 (2013).
    Article CAS Google Scholar

Download references