Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium (original) (raw)
Stecher, B., Berry, D. & Loy, A. Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle. FEMS Microbiol. Rev.37, 793–829 (2013). ArticleCAS Google Scholar
Ubeda, C. & Pamer, E. G. Antibiotics, microbiota, and immune defense. Trends Immunol.33, 459–466 (2012). ArticleCAS Google Scholar
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature486, 207–214 (2012). Article Google Scholar
Clavel, T., Lagkouvardos, I., Blaut, M. & Stecher, B. The mouse gut microbiome revisited: from complex diversity to model ecosystems. Int. J. Med. Microbiol.306, 316–327 (2016). ArticleCAS Google Scholar
Smith, M. I. et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science339, 548–554 (2013). ArticleCAS Google Scholar
Linnenbrink, M. et al. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol. Ecol.22, 1904–1916 (2013). Article Google Scholar
Xiao, L. et al. A catalog of the mouse gut metagenome. Nat. Biotechnol.33, 1103–1108 (2015). ArticleCAS Google Scholar
Chung, H. et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell149, 1578–1593 (2012). ArticleCAS Google Scholar
Fodor, A. A. et al. The ‘most wanted’ taxa from the human microbiome for whole genome sequencing. PLoS ONE7, e41294 (2012). ArticleCAS Google Scholar
Dewhirst, F. E. et al. Phylogeny of the defined murine microbiota: altered Schaedler flora. Appl. Environ. Microbiol.65, 3287–3292 (1999). CASPubMedPubMed Central Google Scholar
Stecher, B. et al. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog.6, e1000711 (2010). Article Google Scholar
Kim, O. S. et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol.62, 716–721 (2012). ArticleCAS Google Scholar
Lagkouvardos, I. et al. The mouse intestinal bacterial collection (miBC) provides host-specific insight into cultivable diversity and functional potential of the mouse gut microbiota. Nat. Microbiol.1, 16131 (2016).
Kaiser, P., Diard, M., Stecher, B. & Hardt, W.-D. The streptomycin mouse model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen's virulence factors, and the host's mucosal immune response. Immunol Rev.245, 56–83 (2012). ArticleCAS Google Scholar
Stecher, B. et al.Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol.5, e244 (2007). Article Google Scholar
Bleich, A. & Hansen, A. K. Time to include the gut microbiota in the hygienic standardisation of laboratory rodents. Comp. Immunol. Microbiol. Infect. Dis.35, 81–92 (2012). Article Google Scholar
Wannemuehler, M. J., Overstreet, A.-M., Ward, D. V. & Phillips, G. J. Draft genome sequences of the altered schaedler flora, a defined bacterial community from gnotobiotic mice. Genome Announc.2, e00287 (2014). Article Google Scholar
Wymore Brand, M. et al. The altered Schaedler flora continued applications of a defined murine microbial community. ILAR J.56, 169–178 (2015). Article Google Scholar
Kanehisa, M. et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res.42, D199–D205 (2014). ArticleCAS Google Scholar
Syed, S. A., Abrams, G. D. & Freter, R. Efficiency of various intestinal bacteria in assuming normal functions of enteric flora after association with germ-free mice. Infect. Immun.2, 376–386 (1970). CASPubMedPubMed Central Google Scholar
Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature502, 96–99 (2013). ArticleCAS Google Scholar
Freter, R., Brickner, H., Botney, M., Cleven, D. & Aranki, A. Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora. Infect. Immun.39, 676–685 (1983). CASPubMedPubMed Central Google Scholar
Maier, L. et al. Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the gut ecosystem. Cell Host Microbe14, 641–651 (2013). ArticleCAS Google Scholar
Deriu, E. et al. Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe14, 26–37 (2013). ArticleCAS Google Scholar
Spees, A. M. et al. Streptomycin-induced inflammation enhances Escherichia coli gut colonization through nitrate respiration. mBio4, e00430-13 (2013). Article Google Scholar
Nuccio, S. P. & Baumler, A. J. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut. mBio5, e00929 (2014). Article Google Scholar
Rivera-Chávez, F. et al. Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of salmonella. Cell Host Microbe19, 443–454 (2016). Article Google Scholar
Wells, C. L., Maddaus, M. A., Jechorek, R. P. & Simmons, R. L. Role of intestinal anaerobic bacteria in colonization resistance. Eur. J. Clin. Microbiol. Infect. Dis.7, 107–113 (1988). ArticleCAS Google Scholar
Stecher, B. et al. Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar typhimurium colitis in streptomycin-pretreated mice. Infect. Immun.72, 4138–4150 (2004). ArticleCAS Google Scholar
MacIntyre, D. L., Miyata, S. T., Kitaoka, M. & Pukatzki, S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc. Natl Acad. Sci. USA107, 19520–19524 (2010). ArticleCAS Google Scholar
Arank, A., Syed, S. A., Kenney, E. B. & Freter, R. Isolation of anaerobic bacteria from human gingiva and mouse cecum by means of a simplified glove box procedure. Appl. Microbiol.17, 568–576 (1969). CASPubMed Google Scholar
Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature479, 538–541 (2011). ArticleCAS Google Scholar
Clavel, T., Charrier, C. & Haller, D. Streptococcus danieliae sp. nov., a novel bacterium isolated from the caecum of a mouse. Arch. Microbiol.195, 43–49 (2013). ArticleCAS Google Scholar
Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol.54, 1469–1476 (2004). ArticleCAS Google Scholar
Hoiseth, S. K. & Stocker, B. A. D. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature291, 238–239 (1981). ArticleCAS Google Scholar
Hapfelmeier, S. et al. The Salmonella pathogenicity island (SPI)-1 and SPI-2 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. J. Immunol.174, 1675–1685 (2005). ArticleCAS Google Scholar
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol.73, 5261–5267 (2007). ArticleCAS Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990). ArticleCAS Google Scholar
DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol.72, 5069–5072 (2006). ArticleCAS Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res.41, D590–D596 (2013). ArticleCAS Google Scholar
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol.19, 455–477 (2012). ArticleCAS Google Scholar
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST quality assessment tool for genome assemblies. Bioinformatics29, 1072–1075 (2013). ArticleCAS Google Scholar
Boisvert, S., Raymond, F., Godzaridis, É., Laviolette, F. & Corbeil, J. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol.13, R122 (2012). Article Google Scholar
Hyatt, D., LoCascio, P. F., Hauser, L. J. & Uberbacher, E. C. Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics28, 2223–2230 (2012). ArticleCAS Google Scholar
Zhao, Y., Tang, H. & Ye, Y. RAPSearch2 a fast and memory-efficient protein similarity search tool for next-generation sequencing data. Bioinformatics28, 125–126 (2012). ArticleCAS Google Scholar
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods7, 335–336 (2010). ArticleCAS Google Scholar
Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem.55, 611–622 (2009). ArticleCAS Google Scholar
Li, H. et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nat. Commun.6, 8292 (2015). ArticleCAS Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ 25 years of image analysis. Nat. Methods9, 671–675 (2012). ArticleCAS Google Scholar
Wang, J. et al. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc. Natl Acad. Sci. USA111, E2703–E2710 (2014). ArticleCAS Google Scholar