Rapid and modifiable neurotransmitter receptor dynamics at a neuronal synapse in vivo (original) (raw)

References

  1. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).
    Article CAS Google Scholar
  2. Triller, A. & Choquet, D. Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! Trends Neurosci. 28, 133–139 (2005).
    Article CAS Google Scholar
  3. Song, I. & Huganir, R.L. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25, 578–588 (2002).
    Article CAS Google Scholar
  4. Borgdorff, A.J. & Choquet, D. Regulation of AMPA receptor lateral movements. Nature 417, 649–653 (2002).
    Article CAS Google Scholar
  5. Lu, W. et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29, 243–254 (2001).
    Article CAS Google Scholar
  6. Beattie, E.C. et al. Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat. Neurosci. 3, 1291–1300 (2000).
    Article CAS Google Scholar
  7. Akaaboune, M., Culican, S.M., Turney, S.G. & Lichtman, J.W. Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo. Science 286, 503–507 (1999).
    Article CAS Google Scholar
  8. Bruneau, E.G. & Akaaboune, M. Running to stand still: ionotropic receptor dynamics at central and peripheral synapses. Mol. Neurobiol. 34, 137–151 (2006).
    Article CAS Google Scholar
  9. Purves, D. Functional and structural changes in mammalian sympathetic neurones following interruption of their axons. J. Physiol. (Lond.) 252, 429–463 (1975).
    Article CAS Google Scholar
  10. Jacob, M.H. & Berg, D.K. The distribution of acetylcholine receptors in chick ciliary ganglion neurons following disruption of ganglionic connections. J. Neurosci. 8, 3838–3849 (1988).
    Article CAS Google Scholar
  11. Matthews, M.R. & Nelson, V.H. Detachment of structurally intact nerve endings from chromatolytic neurones of rat superior cervical ganglion during the depression of synaptic transmission induced by post-ganglionic axotomy. J. Physiol. (Lond.) 245, 91–135 (1975).
    Article CAS Google Scholar
  12. McCann, C.M. & Lichtman, J.W. In vivo imaging of presynaptic terminals and postsynaptic sites in the mouse submandibular ganglion. Dev. Neurobiol. 68, 760–770 (2008).
    Article Google Scholar
  13. Ullian, E.M., McIntosh, J.M. & Sargent, P.B. Rapid synaptic transmission in the avian ciliary ganglion is mediated by two distinct classes of nicotinic receptors. J. Neurosci. 17, 7210–7219 (1997).
    Article CAS Google Scholar
  14. Chang, K.T. & Berg, D.K. Nicotinic acetylcholine receptors containing α7 subunits are required for reliable synaptic transmission in situ. J. Neurosci. 19, 3701–3710 (1999).
    Article CAS Google Scholar
  15. Gan, W.B., Kwon, E., Feng, G., Sanes, J.R. & Lichtman, J.W. Synaptic dynamism measured over minutes to months: age-dependent decline in an autonomic ganglion. Nat. Neurosci. 6, 956–960 (2003).
    Article CAS Google Scholar
  16. Axelrod, D. et al. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc. Natl. Acad. Sci. USA 73, 4594–4598 (1976).
    Article CAS Google Scholar
  17. Akaaboune, M., Grady, R.M., Turney, S., Sanes, J.R. & Lichtman, J.W. Neurotransmitter receptor dynamics studied in vivo by reversible photo-unbinding of fluorescent ligands. Neuron 34, 865–876 (2002).
    Article CAS Google Scholar
  18. Merlie, J.P., Changeux, J.P. & Gros, F. Acetylcholine receptor degradation measured by pulse chase labelling. Nature 264, 74–76 (1976).
    Article CAS Google Scholar
  19. Bruneau, E.G., Macpherson, P.C., Goldman, D., Hume, R.I. & Akaaboune, M. The effect of agrin and laminin on acetylcholine receptor dynamics in vitro. Dev. Biol. 288, 248–258 (2005).
    Article CAS Google Scholar
  20. Bruneau, E., Sutter, D., Hume, R.I. & Akaaboune, M. Identification of nicotinic acetylcholine receptor recycling and its role in maintaining receptor density at the neuromuscular junction in vivo. J. Neurosci. 25, 9949–9959 (2005).
    Article CAS Google Scholar
  21. Bogdanov, Y. et al. Synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts. EMBO J. 25, 4381–4389 (2006).
    Article CAS Google Scholar
  22. Ashby, M.C. et al. Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs. J. Neurosci. 24, 5172–5176 (2004).
    Article CAS Google Scholar
  23. Prekeris, R., Foletti, D.L. & Scheller, R.H. Dynamics of tubulovesicular recycling endosomes in hippocampal neurons. J. Neurosci. 19, 10324–10337 (1999).
    Article CAS Google Scholar
  24. Titmus, M.J. & Faber, D.S. Axotomy-induced alterations in the electrophysiological characteristics of neurons. Prog. Neurobiol. 35, 1–51 (1990).
    Article CAS Google Scholar
  25. Bats, C., Groc, L. & Choquet, D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53, 719–734 (2007).
    Article CAS Google Scholar
  26. Kim, E. & Sheng, M. PDZ domain proteins of synapses. Nat. Rev. Neurosci. 5, 771–781 (2004).
    Article CAS Google Scholar
  27. Parker, M.J., Zhao, S., Bredt, D.S., Sanes, J.R. & Feng, G. PSD93 regulates synaptic stability at neuronal cholinergic synapses. J. Neurosci. 24, 378–388 (2004).
    Article CAS Google Scholar
  28. Conroy, W.G., Liu, Z., Nai, Q., Coggan, J.S. & Berg, D.K. PDZ-containing proteins provide a functional postsynaptic scaffold for nicotinic receptors in neurons. Neuron 38, 759–771 (2003).
    Article CAS Google Scholar
  29. Bishop, D.L., Misgeld, T., Walsh, M.K., Gan, W.B. & Lichtman, J.W. Axon branch removal at developing synapses by axosome shedding. Neuron 44, 651–661 (2004).
    Article CAS Google Scholar
  30. Ko, P.K., Anderson, M.J. & Cohen, M.W. Denervated skeletal muscle fibers develop discrete patches of high acetylcholine receptor density. Science 196, 540–542 (1977).
    Article CAS Google Scholar
  31. Li, J.H. et al. Developmental changes in localization of NMDA receptor subunits in primary cultures of cortical neurons. Eur. J. Neurosci. 10, 1704–1715 (1998).
    Article CAS Google Scholar
  32. Hutcheon, B., Fritschy, J.M. & Poulter, M.O. Organization of GABA receptor alpha-subunit clustering in the developing rat neocortex and hippocampus. Eur. J. Neurosci. 19, 2475–2487 (2004).
    Article CAS Google Scholar
  33. McCann, C.M., Nguyen, Q.T., Santo Neto, H. & Lichtman, J.W. Rapid synapse elimination after postsynaptic protein synthesis inhibition in vivo. J. Neurosci. 27, 6064–6067 (2007).
    Article CAS Google Scholar
  34. Nja, A. & Purves, D. The effects of nerve growth factor and its antiserum on synapses in the superior cervical ganglion of the guinea-pig. J. Physiol. (Lond.) 277, 53–75 (1978).
    Article CAS Google Scholar
  35. Lichtman, J.W. The reorganization of synaptic connexions in the rat submandibular ganglion during post-natal development. J. Physiol. (Lond.) 273, 155–177 (1977).
    Article CAS Google Scholar
  36. Coggan, J.S. et al. Age-associated synapse elimination in mouse parasympathetic ganglia. J. Neurobiol. 60, 214–226 (2004).
    Article Google Scholar
  37. Turney, S.G., Culican, S.M. & Lichtman, J.W. A quantitative fluorescence-imaging technique for studying acetylcholine receptor turnover at neuromuscular junctions in living animals. J. Neurosci. Methods 64, 199–208 (1996).
    Article CAS Google Scholar

Download references