A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse (original) (raw)
References
Katz, B. The Release of Neural Transmitter Substances (Liverpool University Press, Liverpool, UK, 1969). Google Scholar
Sabatini, B.L. & Regehr, W.G. Timing of synaptic transmission. Annu. Rev. Physiol.61, 521–542 (1999). ArticleCAS Google Scholar
Murthy, V.N. & Stevens, C.F. Reversal of synaptic vesicle docking at central synapses. Nat. Neurosci.2, 503–507 (1999). ArticleCAS Google Scholar
Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell79, 717–727 (1994). ArticleCAS Google Scholar
Sara, Y., Virmani, T., Deak, F., Liu, X. & Kavalali, E.T. An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission. Neuron45, 563–573 (2005). ArticleCAS Google Scholar
Groemer, T.W. & Klingauf, J. Synaptic vesicles recycling spontaneously and during activity belong to the same vesicle pool. Nat. Neurosci.10, 145–147 (2007). ArticleCAS Google Scholar
Schikorski, T. & Stevens, C.F. Morphological correlates of functionally defined synaptic vesicle populations. Nat. Neurosci.4, 391–395 (2001). ArticleCAS Google Scholar
Harata, N. et al. Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling. Trends Neurosci.24, 637–643 (2001). ArticleCAS Google Scholar
Südhof, T.C. The synaptic vesicle cycle revisited. Neuron28, 317–320 (2000). Article Google Scholar
Prange, O. & Murphy, T.H. Correlation of miniature synaptic activity and evoked release probability in cultures of cortical neurons. J. Neurosci.19, 6427–6438 (1999). ArticleCAS Google Scholar
Mathew, S.S., Pozzo-Miller, L. & Hablitz, J.J. Kainate modulates presynaptic GABA release from two vesicle pools. J. Neurosci.28, 725–731 (2008). ArticleCAS Google Scholar
Predonzani, A., Arnoldi, F., Lopez-Requena, A. & Burrone, O.R. In vivo site-specific biotinylation of proteins within the secretory pathway using a single vector system. BMC Biotechnol.8, 41 (2008). Article Google Scholar
Chen, I., Howarth, M., Lin, W. & Ting, A.Y. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods2, 99–104 (2005). ArticleCAS Google Scholar
Granseth, B., Odermatt, B., Royle, S.J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron51, 773–786 (2006). ArticleCAS Google Scholar
Miesenböck, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature394, 192–195 (1998). Article Google Scholar
Burrone, J., Li, Z. & Murthy, V.N. Studying vesicle cycling in presynaptic terminals using the genetically encoded probe synaptopHluorin. Nat. Protoc.1, 2970–2978 (2006). ArticleCAS Google Scholar
Aravanis, A.M., Pyle, J.L. & Tsien, R.W. Single synaptic vesicles fusing transiently and successively without loss of identity. Nature423, 643–647 (2003). ArticleCAS Google Scholar
Li, Z. et al. Synaptic vesicle recycling studied in transgenic mice expressing synaptopHluorin. Proc. Natl. Acad. Sci. USA102, 6131–6136 (2005). ArticleCAS Google Scholar
Atasoy, D. et al. Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap. J. Neurosci.28, 10151–10166 (2008). ArticleCAS Google Scholar
Schikorski, T. & Stevens, C.F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci.17, 5858–5867 (1997). ArticleCAS Google Scholar
Fernandez-Alfonso, T. & Ryan, T.A. A heterogeneous “resting” pool of synaptic vesicles that is dynamically interchanged across boutons in mammalian CNS synapses. Brain Cell Biol.36, 87–100 (2008). Article Google Scholar
Poskanzer, K.E. & Davis, G.W. Mobilization and fusion of a non-recycling pool of synaptic vesicles under conditions of endocytic blockade. Neuropharmacology47, 714–723 (2004). ArticleCAS Google Scholar
Delgado, R., Maureira, C., Oliva, C., Kidokoro, Y. & Labarca, P. Size of vesicle pools, rates of mobilization and recycling at neuromuscular synapses of a Drosophila mutant, shibire. Neuron28, 941–953 (2000). ArticleCAS Google Scholar
Sara, Y. et al. Selective capability of SynCAM and neuroligin for functional synapse assembly. J. Neurosci.25, 260–270 (2005). ArticleCAS Google Scholar
Nishiki, T. & Augustine, G.J. Synaptotagmin I synchronizes transmitter release in mouse hippocampal neurons. J. Neurosci.24, 6127–6132 (2004). Article Google Scholar
Chapman, E.R. How does synaptotagmin trigger neurotransmitter release? Annu. Rev. Biochem.77, 615–641 (2008). ArticleCAS Google Scholar
Washbourne, P. et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat. Neurosci.5, 19–26 (2002). ArticleCAS Google Scholar
Deitcher, D.L. et al. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J. Neurosci.18, 2028–2039 (1998). ArticleCAS Google Scholar
Schulze, K.L., Broadie, K., Perin, M.S. & Bellen, H.J. Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell80, 311–320 (1995). ArticleCAS Google Scholar
Umbach, J.A. et al. Presynaptic dysfunction in Drosophila csp mutants. Neuron13, 899–907 (1994). ArticleCAS Google Scholar
Maximov, A., Shin, O.H., Liu, X. & Sudhof, T.C. Synaptotagmin-12, a synaptic vesicle phosphoprotein that modulates spontaneous neurotransmitter release. J. Cell Biol.176, 113–124 (2007). ArticleCAS Google Scholar
Huntwork, S. & Littleton, J.T. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat. Neurosci.10, 1235–1237 (2007). ArticleCAS Google Scholar
Maximov, A., Tang, J., Yang, X., Pang, Z.P. & Sudhof, T.C. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science323, 516–521 (2009). ArticleCAS Google Scholar
Zenisek, D. Vesicle association and exocytosis at ribbon and extraribbon sites in retinal bipolar cell presynaptic terminals. Proc. Natl. Acad. Sci. USA105, 4922–4927 (2008). ArticleCAS Google Scholar
Willig, K.I., Rizzoli, S.O., Westphal, V., Jahn, R. & Hell, S.W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature440, 935–939 (2006). ArticleCAS Google Scholar