Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury (original) (raw)
References
McQuarrie, I.G., Grafstein, B. & Gershon, M.D. Axonal regeneration in the rat sciatic nerve: effect of a conditioning lesion and of dbcAMP. Brain Res.132, 443–453 (1977). ArticleCAS Google Scholar
Schreyer, D.J. & Skene, J.H. Injury-associated induction of GAP-43 expression displays axon branch specificity in rat dorsal root ganglion neurons. J. Neurobiol.24, 959–970 (1993). ArticleCAS Google Scholar
Chen, D.F., Schneider, G.E., Martinou, J.C. & Tonegawa, S. Bcl-2 promotes regeneration of severed axons in mammalian CNS. Nature385, 434–439 (1997). ArticleCAS Google Scholar
Goldberg, J.L., Klassen, M.P., Hua, Y. & Barres, B.A. Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science296, 1860–1864 (2002). ArticleCAS Google Scholar
Yiu, G. & He, Z. Glial inhibition of CNS axon regeneration. Nat. Rev. Neurosci.7, 617–627 (2006). ArticleCAS Google Scholar
Schnell, L. & Schwab, M.E. Axonal regeneration in the rat spinal cord produced by antibody against myelin-assicated neurite growth inhibitors. Nature343, 269–272 (1990). ArticleCAS Google Scholar
Bradbury, E.J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature416, 636–640 (2002). ArticleCAS Google Scholar
Lu, P., Yang, H., Jones, L.L., Filbin, M.T. & Tuszynski, M.H. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J. Neurosci.24, 6402–6409 (2004). ArticleCAS Google Scholar
Pearse, D.D. et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med.10, 610–616 (2004). ArticleCAS Google Scholar
Taylor, L., Jones, L., Tuszynski, M.H. & Blesch, A. Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J. Neurosci.26, 9713–9721 (2006). ArticleCAS Google Scholar
Hofstetter, C.P. et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl. Acad. Sci. USA99, 2199–2204 (2002). ArticleCAS Google Scholar
Qiu, J. et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron34, 895–903 (2002). ArticleCAS Google Scholar
Richardson, P.M. & Issa, V.M. Peripheral injury enhances central regeneration of primary sensory neurones. Nature309, 791–793 (1984). ArticleCAS Google Scholar
Neumann, S. & Woolf, C.J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron23, 83–91 (1999). ArticleCAS Google Scholar
Neumann, S., Bradke, F., Tessier-Lavigne, M. & Basbaum, A.I. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron34, 885–893 (2002). ArticleCAS Google Scholar
Nieuwenhuys, R. The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat. Embryol. (Berl.)190, 307–337 (1994). ArticleCAS Google Scholar
Peters, A. & Palay, S.L. The morphology of synapses. J. Neurocytol.25, 687–700 (1996). ArticleCAS Google Scholar
De Biasi, S., Vitellaro-Zuccarello, L., Bernardi, P., Valtschanoff, J.G. & Weinberg, R.J. Ultrastructural and immunocytochemical characterization of primary afferent terminals in the rat cuneate nucleus. J. Comp. Neurol.347, 275–287 (1994). ArticleCAS Google Scholar
Hwang, S.J., Rustioni, A. & Valtschanoff, J.G. Kainate receptors in primary afferents to the rat gracile nucleus. Neurosci. Lett.312, 137–140 (2001). ArticleCAS Google Scholar
Rustioni, A. & Sotelo, C. Synaptic organization of the nucleus gracilis of the cat. Experimental identification of dorsal root fibers and cortical afferents. J. Comp. Neurol.155, 441–468 (1974). ArticleCAS Google Scholar
Kohama, I. et al. Transplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord. J. Neurosci.21, 944–950 (2001). ArticleCAS Google Scholar
Tan, A.M., Petruska, J.C., Mendell, L.M. & Levine, J.M. Sensory afferents regenerated into dorsal columns after spinal cord injury remain in a chronic pathophysiological state. Exp. Neurol.206, 257–268 (2007). ArticleCAS Google Scholar
Letourneau, P.C. Chemotaxic response of nerve fiber elongation to nerve growth factor. Dev. Biol.66, 183–196 (1978). ArticleCAS Google Scholar
Cabelli, R.J., Hohn, A. & Shatz, C.J. Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Science267, 1662–1666 (1995). ArticleCAS Google Scholar
McAllister, A.K., Katz, L.C. & Lo, D.C. Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron18, 767–778 (1997). ArticleCAS Google Scholar
Ma, L. et al. Neurotrophin-3 is required for appropriate establishment of thalamocortical connections. Neuron36, 623–634 (2002). ArticleCAS Google Scholar
Genç, B., Ozdinler, P.H., Mendoza, A.E. & Erzurumlu, R.S. A chemoattractant role for NT-3 in proprioceptive axon guidance. PLoS Biol.2, e403 (2004). Article Google Scholar
Houle, J.D. et al. Combining an autologous peripheral nervous system “bridge” and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J. Neurosci.26, 7405–7415 (2006). ArticleCAS Google Scholar
Gundersen, R.W. & Barrett, J.N. Characterization of the turning response of dorsal root neurites toward nerve growth factor. J. Cell Biol.87, 546–554 (1980). ArticleCAS Google Scholar
Arévalo, J.C. & Chao, M.V. Axonal growth: where neurotrophins meet Wnts. Curr. Opin. Cell Biol.17, 112–115 (2005). Article Google Scholar
Markus, A., Patel, T.D. & Snider, W.D. Neurotrophic factors and axonal growth. Curr. Opin. Neurobiol.12, 523–531 (2002). ArticleCAS Google Scholar
Cohen-Cory, S. & Fraser, S. Effects of brain-derived neurotrophic factor on optic axon branching and remodeling in vivo. Nature378, 192–196 (1995). ArticleCAS Google Scholar
Zhang, L., Schmidt, R.E., Yan, Q. & Snider, W.D. NGF and NT-3 have differing effects on the growth of dorsal root axons in developing mammalian spinal cord. J. Neurosci.14, 5187–5201 (1994). ArticleCAS Google Scholar
Postigo, A. et al. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons. Genes Dev.16, 633–645 (2002). ArticleCAS Google Scholar
Tessarollo, L., Coppola, V. & Fritzsch, B. NT-3 replacement with brain-derived neurotrophic factor redirects vestibular nerve fibers to the cochlea. J. Neurosci.24, 2575–2584 (2004). ArticleCAS Google Scholar
Vidal-Sanz, M., Bray, G.M., Villegas-Perez, M.P., Thanos, S. & Aguayo, A. Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. J. Neurosci.7, 2894–2909 (1987). ArticleCAS Google Scholar
Tuszynski, M.H. & Gage, F.H. Bridging grafts and transient NGF infusions promote long-term CNS neuronal rescue and partial functional recovery. Proc. Natl. Acad. Sci. USA92, 4621–4625 (1995). ArticleCAS Google Scholar
Moon, L.D., Asher, R.A., Rhodes, K.E. & Fawcett, J.W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat. Neurosci.4, 465–466 (2001). ArticleCAS Google Scholar
Keirstead, S.A., Rasminsky, M., Fukuda, Y., Carter, D. & Aguayo, A.J. Electrophysiologic responses in hamster superior colliculus evoked by regenerating retinal axons. Science246, 255–257 (1989). ArticleCAS Google Scholar
Ramer, M.S. & Bisby, M.A. Adrenergic innervation of rat sensory ganglia following proximal or distal painful sciatic neuropathy: distinct mechanisms revealed by anti-NGF treatment. Eur. J. Neurosci.11, 837–846 (1999). ArticleCAS Google Scholar
Zhou, X.F., Deng, Y.S., Xian, C.J. & Zhong, J.H. Neurotrophins from dorsal root ganglia trigger allodynia after spinal nerve injury in rats. Eur. J. Neurosci.12, 100–105 (2000). ArticleCAS Google Scholar
Dancause, N. et al. Extensive cortical rewiring after brain injury. J. Neurosci.25, 10167–10179 (2005). ArticleCAS Google Scholar
Steward, O., Zheng, B. & Tessier-Lavigne, M. False resurrections: distinguishing regenerated from spared axons in the injured central nervous system. J. Comp. Neurol.459, 1–8 (2003). Article Google Scholar
LaMotte, C.C., Kapadia, S.E. & Shapiro, C.M. Central projections of the sciatic, saphenous, median and ulnar nerves of the rat demonstrated by transganglionic transport of choleragenoid-HRP (B-HRP) and wheat germ agglutinin-HRP (WGA-HRP). J. Comp. Neurol.311, 546–562 (1991). ArticleCAS Google Scholar
Totoiu, M.O. & Keirstead, H.S. Spinal cord injury is accompanied by chronic progressive demyelination. J. Comp. Neurol.486, 373–383 (2005). Article Google Scholar
Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science272, 263–267 (1996). ArticleCAS Google Scholar
Azizi, S.A., Stokes, D., Augelli, B.J., DiGirolamo, C. & Prockop, D.J. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts. Proc. Natl. Acad. Sci. USA95, 3908–3913 (1998). ArticleCAS Google Scholar
Havton, L.A. & Broman, J. Systemic administration of cholera toxin B subunit conjugated to horseradish peroxidase in the adult rat labels preganglionic autonomic neurons, motoneurons, and select primary afferents for light and electron microscopic studies. J. Neurosci. Methods149, 101–109 (2005). ArticleCAS Google Scholar