Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury (original) (raw)

References

  1. McQuarrie, I.G., Grafstein, B. & Gershon, M.D. Axonal regeneration in the rat sciatic nerve: effect of a conditioning lesion and of dbcAMP. Brain Res. 132, 443–453 (1977).
    Article CAS Google Scholar
  2. Schreyer, D.J. & Skene, J.H. Injury-associated induction of GAP-43 expression displays axon branch specificity in rat dorsal root ganglion neurons. J. Neurobiol. 24, 959–970 (1993).
    Article CAS Google Scholar
  3. Chen, D.F., Schneider, G.E., Martinou, J.C. & Tonegawa, S. Bcl-2 promotes regeneration of severed axons in mammalian CNS. Nature 385, 434–439 (1997).
    Article CAS Google Scholar
  4. Goldberg, J.L., Klassen, M.P., Hua, Y. & Barres, B.A. Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296, 1860–1864 (2002).
    Article CAS Google Scholar
  5. Yiu, G. & He, Z. Glial inhibition of CNS axon regeneration. Nat. Rev. Neurosci. 7, 617–627 (2006).
    Article CAS Google Scholar
  6. Schnell, L. & Schwab, M.E. Axonal regeneration in the rat spinal cord produced by antibody against myelin-assicated neurite growth inhibitors. Nature 343, 269–272 (1990).
    Article CAS Google Scholar
  7. Bradbury, E.J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).
    Article CAS Google Scholar
  8. Lu, P., Yang, H., Jones, L.L., Filbin, M.T. & Tuszynski, M.H. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J. Neurosci. 24, 6402–6409 (2004).
    Article CAS Google Scholar
  9. Pearse, D.D. et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med. 10, 610–616 (2004).
    Article CAS Google Scholar
  10. Taylor, L., Jones, L., Tuszynski, M.H. & Blesch, A. Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J. Neurosci. 26, 9713–9721 (2006).
    Article CAS Google Scholar
  11. Thuret, S., Moon, L.D. & Gage, F.H. Therapeutic interventions after spinal cord injury. Nat. Rev. Neurosci. 7, 628–643 (2006).
    Article CAS Google Scholar
  12. Hofstetter, C.P. et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl. Acad. Sci. USA 99, 2199–2204 (2002).
    Article CAS Google Scholar
  13. Qiu, J. et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34, 895–903 (2002).
    Article CAS Google Scholar
  14. Richardson, P.M. & Issa, V.M. Peripheral injury enhances central regeneration of primary sensory neurones. Nature 309, 791–793 (1984).
    Article CAS Google Scholar
  15. Neumann, S. & Woolf, C.J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83–91 (1999).
    Article CAS Google Scholar
  16. Neumann, S., Bradke, F., Tessier-Lavigne, M. & Basbaum, A.I. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34, 885–893 (2002).
    Article CAS Google Scholar
  17. Nieuwenhuys, R. The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat. Embryol. (Berl.) 190, 307–337 (1994).
    Article CAS Google Scholar
  18. Garner, C.C., Zhai, R.G., Gundelfinger, E.D. & Ziv, N.E. Molecular mechanisms of CNS synaptogenesis. Trends Neurosci. 25, 243–251 (2002).
    Article CAS Google Scholar
  19. Peters, A. & Palay, S.L. The morphology of synapses. J. Neurocytol. 25, 687–700 (1996).
    Article CAS Google Scholar
  20. De Biasi, S., Vitellaro-Zuccarello, L., Bernardi, P., Valtschanoff, J.G. & Weinberg, R.J. Ultrastructural and immunocytochemical characterization of primary afferent terminals in the rat cuneate nucleus. J. Comp. Neurol. 347, 275–287 (1994).
    Article CAS Google Scholar
  21. Hwang, S.J., Rustioni, A. & Valtschanoff, J.G. Kainate receptors in primary afferents to the rat gracile nucleus. Neurosci. Lett. 312, 137–140 (2001).
    Article CAS Google Scholar
  22. Rustioni, A. & Sotelo, C. Synaptic organization of the nucleus gracilis of the cat. Experimental identification of dorsal root fibers and cortical afferents. J. Comp. Neurol. 155, 441–468 (1974).
    Article CAS Google Scholar
  23. Kohama, I. et al. Transplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord. J. Neurosci. 21, 944–950 (2001).
    Article CAS Google Scholar
  24. Tan, A.M., Petruska, J.C., Mendell, L.M. & Levine, J.M. Sensory afferents regenerated into dorsal columns after spinal cord injury remain in a chronic pathophysiological state. Exp. Neurol. 206, 257–268 (2007).
    Article CAS Google Scholar
  25. Letourneau, P.C. Chemotaxic response of nerve fiber elongation to nerve growth factor. Dev. Biol. 66, 183–196 (1978).
    Article CAS Google Scholar
  26. Cabelli, R.J., Hohn, A. & Shatz, C.J. Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Science 267, 1662–1666 (1995).
    Article CAS Google Scholar
  27. McAllister, A.K., Katz, L.C. & Lo, D.C. Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18, 767–778 (1997).
    Article CAS Google Scholar
  28. Ma, L. et al. Neurotrophin-3 is required for appropriate establishment of thalamocortical connections. Neuron 36, 623–634 (2002).
    Article CAS Google Scholar
  29. Genç, B., Ozdinler, P.H., Mendoza, A.E. & Erzurumlu, R.S. A chemoattractant role for NT-3 in proprioceptive axon guidance. PLoS Biol. 2, e403 (2004).
    Article Google Scholar
  30. Houle, J.D. et al. Combining an autologous peripheral nervous system “bridge” and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J. Neurosci. 26, 7405–7415 (2006).
    Article CAS Google Scholar
  31. Gundersen, R.W. & Barrett, J.N. Characterization of the turning response of dorsal root neurites toward nerve growth factor. J. Cell Biol. 87, 546–554 (1980).
    Article CAS Google Scholar
  32. Arévalo, J.C. & Chao, M.V. Axonal growth: where neurotrophins meet Wnts. Curr. Opin. Cell Biol. 17, 112–115 (2005).
    Article Google Scholar
  33. Markus, A., Patel, T.D. & Snider, W.D. Neurotrophic factors and axonal growth. Curr. Opin. Neurobiol. 12, 523–531 (2002).
    Article CAS Google Scholar
  34. Cohen-Cory, S. & Fraser, S. Effects of brain-derived neurotrophic factor on optic axon branching and remodeling in vivo. Nature 378, 192–196 (1995).
    Article CAS Google Scholar
  35. Zhang, L., Schmidt, R.E., Yan, Q. & Snider, W.D. NGF and NT-3 have differing effects on the growth of dorsal root axons in developing mammalian spinal cord. J. Neurosci. 14, 5187–5201 (1994).
    Article CAS Google Scholar
  36. Postigo, A. et al. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons. Genes Dev. 16, 633–645 (2002).
    Article CAS Google Scholar
  37. Tessarollo, L., Coppola, V. & Fritzsch, B. NT-3 replacement with brain-derived neurotrophic factor redirects vestibular nerve fibers to the cochlea. J. Neurosci. 24, 2575–2584 (2004).
    Article CAS Google Scholar
  38. Vidal-Sanz, M., Bray, G.M., Villegas-Perez, M.P., Thanos, S. & Aguayo, A. Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. J. Neurosci. 7, 2894–2909 (1987).
    Article CAS Google Scholar
  39. Tuszynski, M.H. & Gage, F.H. Bridging grafts and transient NGF infusions promote long-term CNS neuronal rescue and partial functional recovery. Proc. Natl. Acad. Sci. USA 92, 4621–4625 (1995).
    Article CAS Google Scholar
  40. Moon, L.D., Asher, R.A., Rhodes, K.E. & Fawcett, J.W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat. Neurosci. 4, 465–466 (2001).
    Article CAS Google Scholar
  41. Keirstead, S.A., Rasminsky, M., Fukuda, Y., Carter, D. & Aguayo, A.J. Electrophysiologic responses in hamster superior colliculus evoked by regenerating retinal axons. Science 246, 255–257 (1989).
    Article CAS Google Scholar
  42. Ramer, M.S. & Bisby, M.A. Adrenergic innervation of rat sensory ganglia following proximal or distal painful sciatic neuropathy: distinct mechanisms revealed by anti-NGF treatment. Eur. J. Neurosci. 11, 837–846 (1999).
    Article CAS Google Scholar
  43. Zhou, X.F., Deng, Y.S., Xian, C.J. & Zhong, J.H. Neurotrophins from dorsal root ganglia trigger allodynia after spinal nerve injury in rats. Eur. J. Neurosci. 12, 100–105 (2000).
    Article CAS Google Scholar
  44. Dancause, N. et al. Extensive cortical rewiring after brain injury. J. Neurosci. 25, 10167–10179 (2005).
    Article CAS Google Scholar
  45. Steward, O., Zheng, B. & Tessier-Lavigne, M. False resurrections: distinguishing regenerated from spared axons in the injured central nervous system. J. Comp. Neurol. 459, 1–8 (2003).
    Article Google Scholar
  46. LaMotte, C.C., Kapadia, S.E. & Shapiro, C.M. Central projections of the sciatic, saphenous, median and ulnar nerves of the rat demonstrated by transganglionic transport of choleragenoid-HRP (B-HRP) and wheat germ agglutinin-HRP (WGA-HRP). J. Comp. Neurol. 311, 546–562 (1991).
    Article CAS Google Scholar
  47. Totoiu, M.O. & Keirstead, H.S. Spinal cord injury is accompanied by chronic progressive demyelination. J. Comp. Neurol. 486, 373–383 (2005).
    Article Google Scholar
  48. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).
    Article CAS Google Scholar
  49. Azizi, S.A., Stokes, D., Augelli, B.J., DiGirolamo, C. & Prockop, D.J. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts. Proc. Natl. Acad. Sci. USA 95, 3908–3913 (1998).
    Article CAS Google Scholar
  50. Havton, L.A. & Broman, J. Systemic administration of cholera toxin B subunit conjugated to horseradish peroxidase in the adult rat labels preganglionic autonomic neurons, motoneurons, and select primary afferents for light and electron microscopic studies. J. Neurosci. Methods 149, 101–109 (2005).
    Article CAS Google Scholar

Download references