Functional consequences of animal-to-animal variation in circuit parameters (original) (raw)

References

  1. Prinz, A.A., Bucher, D. & Marder, E. Similar network activity from disparate circuit parameters. Nat. Neurosci. 7, 1345–1352 (2004).
    Article CAS Google Scholar
  2. Goldman, M.S., Golowasch, J., Marder, E. & Abbott, L.F. Global structure, robustness and modulation of neuronal models. J. Neurosci. 21, 5229–5238 (2001).
    Article CAS Google Scholar
  3. Achard, P. & De Schutter, E. Complex parameter landscape for a complex neuron model. PLoS Comput. Biol. 2, e94 (2006).
    Article Google Scholar
  4. Marder, E. & Goaillard, J.M. Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7, 563–574 (2006).
    Article CAS Google Scholar
  5. Swensen, A.M. & Bean, B.P. Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. J. Neurosci. 25, 3509–3520 (2005).
    Article CAS Google Scholar
  6. Golowasch, J., Abbott, L.F. & Marder, E. Activity-dependent regulation of potassium currents in an identified neuron of the stomatogastric ganglion of the crab Cancer borealis. J. Neurosci. 19, RC33 (1999).
    Article CAS Google Scholar
  7. Schulz, D.J., Goaillard, J.M. & Marder, E. Variable channel expression in identified single and electrically coupled neurons in different animals. Nat. Neurosci. 9, 356–362 (2006).
    Article CAS Google Scholar
  8. Liss, B. et al. Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. EMBO J. 20, 5715–5724 (2001).
    Article CAS Google Scholar
  9. Liss, B. & Roeper, J. Correlating function and gene expression of individual basal ganglia neurons. Trends Neurosci. 27, 475–481 (2004).
    Article CAS Google Scholar
  10. MacLean, J.N. et al. Activity-independent coregulation of _I_A and _I_h in rhythmically active neurons. J. Neurophysiol. 94, 3601–3617 (2005).
    Article Google Scholar
  11. Schulz, D.J., Goaillard, J.M. & Marder, E.E. Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. Proc. Natl. Acad. Sci. USA 104, 13187–13191 (2007).
    Article Google Scholar
  12. Marder, E. & Bucher, D. Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu. Rev. Physiol. 69, 291–316 (2007).
    Article CAS Google Scholar
  13. Eisen, J.S. & Marder, E. A mechanism for production of phase shifts in a pattern generator. J. Neurophysiol. 51, 1375–1393 (1984).
    Article CAS Google Scholar
  14. Harris-Warrick, R.M., Coniglio, L.M., Barazangi, N., Guckenheimer, J. & Gueron, S. Dopamine modulation of transient potassium current evokes phase shifts in a central pattern generator network. J. Neurosci. 15, 342–358 (1995).
    Article CAS Google Scholar
  15. Harris-Warrick, R.M., Coniglio, L.M., Levini, R.M., Gueron, S. & Guckenheimer, J. Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron. J. Neurophysiol. 74, 1404–1420 (1995).
    Article CAS Google Scholar
  16. Thuma, J.B., Harness, P.I., Koehnle, T.J., Morris, L.G. & Hooper, S.L. Muscle anatomy is a primary determinant of muscle relaxation dynamics in the lobster (Panulirus interruptus) stomatogastric system. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 193, 1101–1113 (2007).
    Article Google Scholar
  17. Golowasch, J. & Marder, E. Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. J. Neurophysiol. 67, 318–331 (1992).
    Article CAS Google Scholar
  18. Taylor, A.L., Goaillard, J.M. & Marder, E. How multiple conductances determine electrophysiological properties in a multicompartmental model. J. Neurosci. 29, 5573–5586 (2009).
    Article CAS Google Scholar
  19. Eisen, J.S. & Marder, E. Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. III. Synaptic connections of electrically coupled pyloric neurons. J. Neurophysiol. 48, 1392–1415 (1982).
    Article CAS Google Scholar
  20. Marder, E. & Eisen, J.S. Transmitter identification of pyloric neurons: electrically coupled neurons use different neurotransmitters. J. Neurophysiol. 51, 1345–1361 (1984).
    Article CAS Google Scholar
  21. Hooper, S.L. & Marder, E. Modulation of the lobster pyloric rhythm by the peptide proctolin. J. Neurosci. 7, 2097–2112 (1987).
    Article CAS Google Scholar
  22. Miller, J.P. Pyloric mechanisms. in The Crustacean Stomatogastric System (eds. Selverston, A.I. & Moulins, M.) 109–145 (Springer-Verlag, Berlin, 1987).
  23. Thirumalai, V., Prinz, A.A., Johnson, C.D. & Marder, E. Red pigment concentrating hormone strongly enhances the strength of the feedback to the pyloric rhythm oscillator but has little effect on pyloric rhythm period. J. Neurophysiol. 95, 1762–1770 (2006).
    Article CAS Google Scholar
  24. Nadim, F., Manor, Y., Kopell, N. & Marder, E. Synaptic depression creates a switch that controls the frequency of an oscillatory circuit. Proc. Natl. Acad. Sci. USA 96, 8206–8211 (1999).
    Article CAS Google Scholar
  25. Nusbaum, M.P., Blitz, D.M., Swensen, A.M., Wood, D. & Marder, E. The roles of co-transmission in neural network modulation. Trends Neurosci. 24, 146–154 (2001).
    Article CAS Google Scholar
  26. Swensen, A.M. & Marder, E. Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit. J. Neurosci. 20, 6752–6759 (2000).
    Article CAS Google Scholar
  27. Swensen, A.M. & Marder, E. Modulators with convergent cellular actions elicit distinct circuit outputs. J. Neurosci. 21, 4050–4058 (2001).
    Article CAS Google Scholar
  28. Golowasch, J. & Marder, E. Proctolin activates an inward current whose voltage dependence is modified by extracellular Ca2+. J. Neurosci. 12, 810–817 (1992).
    Article CAS Google Scholar
  29. Weimann, J.M. et al. Modulation of oscillator interactions in the crab stomatogastric ganglion by crustacean cardioactive peptide. J. Neurosci. 17, 1748–1760 (1997).
    Article CAS Google Scholar
  30. MacLean, J.N., Zhang, Y., Johnson, B.R. & Harris-Warrick, R.M. Activity-independent homeostasis in rhythmically active neurons. Neuron 37, 109–120 (2003).
    Article CAS Google Scholar
  31. Lüthi, A. & McCormick, D.A. H-current: properties of a neuronal and network pacemaker. Neuron 21, 9–12 (1998).
    Article Google Scholar
  32. Norris, B.J., Weaver, A.L., Wenning, A., Garcia, P.S. & Calabrese, R.L. A central pattern generator producing alternative outputs: pattern, strength and dynamics of premotor synaptic input to leech heart motor neurons. J. Neurophysiol. 98, 2992–3005 (2007).
    Article Google Scholar
  33. Norris, B.J., Weaver, A.L., Wenning, A., Garcia, P.S. & Calabrese, R.L. A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input. J. Neurophysiol. 98, 2983–2991 (2007).
    Article Google Scholar
  34. Bucher, D., Prinz, A.A. & Marder, E. Animal-to-animal variability in motor pattern production in adults and during growth. J. Neurosci. 25, 1611–1619 (2005).
    Article CAS Google Scholar
  35. Prinz, A.A., Thirumalai, V. & Marder, E. The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. J. Neurosci. 23, 943–954 (2003).
    Article CAS Google Scholar
  36. van Welie, I., van Hooft, J.A. & Wadman, W.J. Homeostatic scaling of neuronal excitability by synaptic modulation of somatic hyperpolarization-activated _I_h channels. Proc. Natl. Acad. Sci. USA 101, 5123–5128 (2004).
    Article CAS Google Scholar
  37. Lien, C.C. & Jonas, P. Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J. Neurosci. 23, 2058–2068 (2003).
    Article CAS Google Scholar
  38. Tierney, A.J. & Harris-Warrick, R.M. Physiological role of the transient potassium current in the pyloric circuit of the lobster stomatogastric ganglion. J. Neurophysiol. 67, 599–609 (1992).
    Article CAS Google Scholar
  39. Rabbah, P. & Nadim, F. Distinct synaptic dynamics of heterogeneous pacemaker neurons in an oscillatory network. J. Neurophysiol. 97, 2239–2253 (2007).
    Article Google Scholar
  40. Greenspan, R.J. The flexible genome. Nat. Rev. Genet. 2, 383–387 (2001).
    Article CAS Google Scholar
  41. Chouard, T. Darwin 200: beneath the surface. Nature 456, 300–303 (2008).
    Article CAS Google Scholar
  42. Hooper, S.L. et al. The innervation of the pyloric region of the crab, Cancer borealis: homologous muscles in decapod species are differently innervated. J. Comp. Physiol. [A] 159, 227–240 (1986).
    Article CAS Google Scholar
  43. Weimann, J.M., Meyrand, P. & Marder, E. Neurons that form multiple pattern generators: identification and multiple activity patterns of gastric/pyloric neurons in the crab stomatogastric system. J. Neurophysiol. 65, 111–122 (1991).
    Article CAS Google Scholar
  44. Buchholtz, F., Golowasch, J., Epstein, I.R. & Marder, E. Mathematical model of an identified stomatogastric ganglion neuron. J. Neurophysiol. 67, 332–340 (1992).
    Article CAS Google Scholar

Download references