Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun (original) (raw)
Merkle, F.T. & Alvarez-Buylla, A. Neural stem cells in mammalian development. Curr. Opin. Cell Biol.18, 704–709 (2006). ArticleCASPubMed Google Scholar
Götz, M. & Barde, Y.A. Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons. Neuron46, 369–372 (2005). ArticlePubMed Google Scholar
Ho, M.S., Tsai, P.I. & Chien, C.T. F-box proteins: the key to protein degradation. J. Biomed. Sci.13, 181–191 (2006). ArticleCASPubMed Google Scholar
Welcker, M. & Clurman, B.E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer8, 83–93 (2008). ArticleCASPubMed Google Scholar
Tan, Y., Sangfelt, O. & Spruck, C. The Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Lett.271, 1–12 (2008). ArticleCASPubMed Google Scholar
Fuchs, S.Y. Tumor suppressor activities of the Fbw7 E3 ubiquitin ligase receptor. Cancer Biol. Ther.4, 506–508 (2005). ArticleCASPubMed Google Scholar
Behrens, A., Sibilia, M. & Wagner, E.F. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat. Genet.21, 326–329 (1999). ArticleCASPubMed Google Scholar
Besirli, C.G., Wagner, E.F. & Johnson, E.M. Jr. The limited role of NH2-terminal c-Jun phosphorylation in neuronal apoptosis: identification of the nuclear pore complex as a potential target of the JNK pathway. J. Cell Biol.170, 401–411 (2005). ArticleCASPubMedPubMed Central Google Scholar
Raivich, G. et al. The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron43, 57–67 (2004). ArticleCASPubMed Google Scholar
Yoon, K.J. et al. Mind bomb 1-expressing intermediate progenitors generate notch signaling to maintain radial glial cells. Neuron58, 519–531 (2008). ArticleCASPubMed Google Scholar
Mizutani, K., Yoon, K., Dang, L., Tokunaga, A. & Gaiano, N. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature449, 351–355 (2007). ArticleCASPubMed Google Scholar
Yoon, K. & Gaiano, N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat. Neurosci.8, 709–715 (2005). ArticleCASPubMed Google Scholar
Tetzlaff, M.T. et al. Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc. Natl. Acad. Sci. USA101, 3338–3345 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tsunematsu, R. et al. Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J. Biol. Chem.279, 9417–9423 (2004). ArticleCASPubMed Google Scholar
Kramer, E.R. et al. Cooperation between GDNF/Ret and ephrinA/EphA4 signals for motor-axon pathway selection in the limb. Neuron50, 35–47 (2006). ArticleCASPubMed Google Scholar
Hartfuss, E., Galli, R., Heins, N. & Götz, M. Characterization of CNS precursor subtypes and radial glia. Dev. Biol.229, 15–30 (2001). ArticleCASPubMed Google Scholar
Reynolds, B.A. & Rietze, R.L. Neural stem cells and neurospheres–re-evaluating the relationship. Nat. Methods2, 333–336 (2005). ArticleCASPubMed Google Scholar
Nateri, A.S., Riera-Sans, L., Da Costa, C. & Behrens, A. The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science303, 1374–1378 (2004). ArticleCASPubMed Google Scholar
Whitfield, J., Neame, S.J., Paquet, L., Bernard, O. & Ham, J. Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron29, 629–643 (2001). ArticleCASPubMed Google Scholar
Ma, C. et al. dp5/HRK is a c-Jun target gene and required for apoptosis induced by potassium deprivation in cerebellar granule neurons. J. Biol. Chem.282, 30901–30909 (2007). ArticleCASPubMed Google Scholar
Angel, P., Hattori, K., Smeal, T. & Karin, M. The jun proto-oncogene is positively autoregulated by its product, Jun/AP1. Cell55, 875–885 (1988). ArticleCASPubMed Google Scholar
Gaiano, N., Nye, J.S. & Fishell, G. Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron26, 395–404 (2000). ArticleCASPubMed Google Scholar
Anthony, T.E., Mason, H.A., Gridley, T., Fishell, G. & Heintz, N. Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells. Genes Dev.19, 1028–1033 (2005). ArticleCASPubMedPubMed Central Google Scholar
Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity10, 547–558 (1999). ArticleCASPubMed Google Scholar
Selkoe, D. & Kopan, R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu. Rev. Neurosci.26, 565–597 (2003). ArticleCASPubMed Google Scholar
Anthony, T.E., Klein, C., Fishell, G. & Heintz, N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron41, 881–890 (2004). ArticleCASPubMed Google Scholar
Patten, B.A., Peyrin, J.M., Weinmaster, G. & Corfas, G. Sequential signaling through Notch1 and erbB receptors mediates radial glia differentiation. J. Neurosci.23, 6132–6140 (2003). ArticleCASPubMedPubMed Central Google Scholar
Coffey, E.T. et al. c-Jun N-terminal protein kinase (JNK) 2/3 is specifically activated by stress, mediating c-Jun activation, in the presence of constitutive JNK1 activity in cerebellar neurons. J. Neurosci.22, 4335–4345 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wang, X. et al. Targeted deletion of the mitogen-activated protein kinase kinase 4 gene in the nervous system causes severe brain developmental defects and premature death. Mol. Cell. Biol.27, 7935–7946 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chang, L., Jones, Y., Ellisman, M.H., Goldstein, L.S. & Karin, M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev. Cell4, 521–533 (2003). ArticleCASPubMed Google Scholar
de la Pompa, J.L. et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development124, 1139–1148 (1997). CASPubMed Google Scholar
Nelson, B.R., Hartman, B.H., Georgi, S.A., Lan, M.S. & Reh, T.A. Transient inactivation of Notch signaling synchronizes differentiation of neural progenitor cells. Dev. Biol.304, 479–498 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hojo, M. et al. Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development127, 2515–2522 (2000). CASPubMed Google Scholar
Thompson, B.J. et al. Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J. Exp. Med.205, 1395–1408 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mao, J.H. et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature432, 775–779 (2004). ArticleCASPubMed Google Scholar
Welcker, M., Orian, A., Grim, J.E., Eisenman, R.N. & Clurman, B.E. A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Curr. Biol.14, 1852–1857 (2004). ArticleCASPubMed Google Scholar
Sangfelt, O., Cepeda, D., Malyukova, A., van Drogen, F. & Reed, S.I. Both SCFCdc4α and SCFCdc4γ are required for cyclin E turnover in cell lines that do not overexpress cyclin E. Cell Cycle7, 1075–1082 (2008). ArticleCASPubMed Google Scholar
van Drogen, F. et al. Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. Mol. Cell23, 37–48 (2006). ArticleCASPubMed Google Scholar
Matsuoka, S. et al. Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev.22, 986–991 (2008). ArticleCASPubMedPubMed Central Google Scholar
Pollard, S.M., Conti, L., Sun, Y., Goffredo, D. & Smith, A. Adherent neural stem (NS) cells from fetal and adult forebrain. Cereb. Cortex16 (suppl. 1): i112–i120 (2006). ArticlePubMed Google Scholar
Behrens, A. et al. Impaired intervertebral disc formation in the absence of Jun. Development130, 103–109 (2003). ArticleCASPubMed Google Scholar
Nateri, A.S., Spencer-Dene, B. & Behrens, A. Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature437, 281–285 (2005). ArticleCASPubMed Google Scholar