TRPA1 is required for histamine-independent, Mas-related G protein–coupled receptor–mediated itch (original) (raw)
References
Ikoma, A., Steinhoff, M., Stander, S., Yosipovitch, G. & Schmelz, M. The neurobiology of itch. Nat. Rev. Neurosci.7, 535–547 (2006). ArticleCAS Google Scholar
Ajayi, A.A., Oluokun, A., Sofowora, O., Akinleye, A. & Ajayi, A.T. Epidemiology of antimalarial-induced pruritus in Africans. Eur. J. Clin. Pharmacol.37, 539–540 (1989). ArticleCAS Google Scholar
Reddy, V.B., Iuga, A.O., Shimada, S.G., LaMotte, R.H. & Lerner, E.A. Cowhage-evoked itch is mediated by a novel cysteine protease: a ligand of protease-activated receptors. J. Neurosci.28, 4331–4335 (2008). ArticleCAS Google Scholar
Johanek, L.M. et al. A role for polymodal C-fiber afferents in nonhistaminergic itch. J. Neurosci.28, 7659–7669 (2008). ArticleCAS Google Scholar
Namer, B. et al. Separate peripheral pathways for pruritus in man. J. Neurophysiol.100, 2062–2069 (2008). Article Google Scholar
Sardana, N., Santos, C., Lehman, E. & Craig, T. A comparison of intranasal corticosteroid, leukotriene receptor antagonist, and topical antihistamine in reducing symptoms of perennial allergic rhinitis as assessed through the Rhinitis Severity Score. Allergy Asthma Proc.31, 5–9 (2010). ArticleCAS Google Scholar
Nathan, R.A. Management of patients with allergic rhinitis and asthma: literature review. South. Med. J.102, 935–941 (2009). Article Google Scholar
Steinhoff, M. et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J. Neurosci.23, 6176–6180 (2003). ArticleCAS Google Scholar
Rukwied, R., Lischetzki, G., McGlone, F., Heyer, G. & Schmelz, M. Mast cell mediators other than histamine induce pruritus in atopic dermatitis patients: a dermal microdialysis study. Br. J. Dermatol.142, 1114–1120 (2000). ArticleCAS Google Scholar
Tsujii, K., Andoh, T., Ui, H., Lee, J.B. & Kuraishi, Y. Involvement of tryptase and proteinase-activated receptor-2 in spontaneous itch-associated response in mice with atopy-like dermatitis. J. Pharmacol. Sci.109, 388–395 (2009). ArticleCAS Google Scholar
Howarth, P.H., Salagean, M. & Dokic, D. Allergic rhinitis: not purely a histamine-related disease. Allergy55 (suppl 64), 7–16 (2000). Article Google Scholar
Davidson, S. et al. The itch-producing agents histamine and cowhage activate separate populations of primate spinothalamic tract neurons. J. Neurosci.27, 10007–10014 (2007). ArticleCAS Google Scholar
Schmelz, M. et al. Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J. Neurophysiol.89, 2441–2448 (2003). ArticleCAS Google Scholar
Sun, Y.G. et al. Cellular basis of itch sensation. Science325, 1531–1534 (2009). ArticleCAS Google Scholar
Imamachi, N. et al. TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proc. Natl. Acad. Sci. USA106, 11330–11335 (2009). ArticleCAS Google Scholar
Liu, Q. et al. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell139, 1353–1365 (2009). Article Google Scholar
Lee, M.G. et al. Agonists of the MAS-related gene (Mrgs) orphan receptors as novel mediators of mast cell–sensory nerve interactions. J. Immunol.180, 2251–2255 (2008). ArticleCAS Google Scholar
Jordt, S.E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature427, 260–265 (2004). ArticleCAS Google Scholar
Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron41, 849–857 (2004). ArticleCAS Google Scholar
Parsons, M.E. & Ganellin, C.R. Histamine and its receptors. Br. J. Pharmacol.147, S127–S135 (2006). ArticleCAS Google Scholar
Julius, D., MacDermott, A.B., Axel, R. & Jessell, T.M. Molecular characterization of a functional cDNA encoding the serotonin 1c receptor. Science241, 558–564 (1988). ArticleCAS Google Scholar
Zylka, M.J., Dong, X., Southwell, A.L. & Anderson, D.J. Atypical expansion in mice of the sensory neuron-specific Mrg G protein–coupled receptor family. Proc. Natl. Acad. Sci. USA100, 10043–10048 (2003). ArticleCAS Google Scholar
Han, S.K. et al. Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide–related peptides through the Galpha q/11 pathway. Proc. Natl. Acad. Sci. USA99, 14740–14745 (2002). ArticleCAS Google Scholar
McNamara, C.R. et al. TRPA1 mediates formalin-induced pain. Proc. Natl. Acad. Sci. USA104, 13525–13530 (2007). ArticleCAS Google Scholar
Eid, S.R. et al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol. Pain4, 48 (2008). Article Google Scholar
Kerstein, P.C., del Camino, D., Moran, M.M. & Stucky, C.L. Pharmacological blockade of TRPA1 inhibits mechanical firing in nociceptors. Mol. Pain5, 19 (2009). Article Google Scholar
Kim, B.M., Lee, S.H., Shim, W.S. & Oh, U. Histamine-induced Ca2+ influx via the PLA2/lipoxygenase/TRPV1 pathway in rat sensory neurons. Neurosci. Lett.361, 159–162 (2004). ArticleCAS Google Scholar
Shim, W.S. et al. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J. Neurosci.27, 2331–2337 (2007). ArticleCAS Google Scholar
Bautista, D.M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell124, 1269–1282 (2006). ArticleCAS Google Scholar
Wang, S. et al. Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain131, 1241–1251 (2008). Article Google Scholar
Han, S.K., Mancino, V. & Simon, M.I. Phospholipase Cβ 3 mediates the scratching response activated by the histamine H1 receptor on C-fiber nociceptive neurons. Neuron52, 691–703 (2006). ArticleCAS Google Scholar
Montell, C. In search of the holy grail for Drosophila TRP. Neuron58, 825–827 (2008). ArticleCAS Google Scholar
Dascal, N. Ion-channel regulation by G proteins. Trends Endocrinol. Metab.12, 391–398 (2001). ArticleCAS Google Scholar
Rishal, I., Porozov, Y., Yakubovich, D., Varon, D. & Dascal, N. Gβγ-dependent and Gβγ-independent basal activity of G protein–activated K+ channels. J. Biol. Chem.280, 16685–16694 (2005). ArticleCAS Google Scholar
Zhou, Y., Sondek, J. & Harden, T.K. Activation of human phospholipase C-η2 by Gβγ. Biochemistry47, 4410–4417 (2008). ArticleCAS Google Scholar
Bianchi, E., Norcini, M., Smrcka, A. & Ghelardini, C. Supraspinal Gβγ-dependent stimulation of PLCβ3 originating from G inhibitory protein-μ opioid receptor-coupling is necessary for morphine induced acute hyperalgesia. J. Neurochem.111, 171–180 (2009). ArticleCAS Google Scholar
Shimada, S.G. & LaMotte, R.H. Behavioral differentiation between itch and pain in mouse. Pain139, 681–687 (2008). Article Google Scholar
Yosipovitch, G. & Fleisher, A. Itch asscociated with skin disease: Advances in pathophysiology and emerging therapies. Am. J. Clin. Dermatol.4, 617–622 (2003). Article Google Scholar
Abila, B., Ezeamuzie, I.C., Igbigbi, P.S., Ambakederemo, A.W. & Asomugha, L. Effects of two antihistamines on chloroquine and histamine induced weal and flare in healthy African volunteers. Afr. J. Med. Med. Sci.23, 139–142 (1994). CASPubMed Google Scholar
Zurborg, S., Yurgionas, B., Jira, J.A., Caspani, O. & Heppenstall, P.A. Direct activation of the ion channel TRPA1 by Ca2+. Nat. Neurosci.10, 277–279 (2007). ArticleCAS Google Scholar
Wang, Y.Y., Chang, R.B., Waters, H.N., McKemy, D.D. & Liman, E.R. The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J. Biol. Chem.283, 32691–32703 (2008). ArticleCAS Google Scholar
Mathews, J.L., Smrcka, A.V. & Bidlack, J.M.A. Novel G Gβγ-subunit inhibitor selectively modulates μ-opioid–dependent antinociception and attenuates acute morphine-induced antinociceptive tolerance and dependence. J. Neurosci.28, 12183–12189 (2008). ArticleCAS Google Scholar
Rousset, M., Cens, T., Gouin-Charnet, A., Scamps, F. & Charnet, P. Ca2+ and phosphatidylinositol 4,5-bisphosphate stabilize a Gβγ-sensitive state of CaV2 Ca2+ channels. J. Biol. Chem.279, 14619–14630 (2004). ArticleCAS Google Scholar
Ma, Q. Labeled lines meet and talk: population coding of somatic sensations. J. Clin. Invest.120, 3773–3778 (2010). ArticleCAS Google Scholar
Guan, Y. et al. Mas-related G protein–coupled receptors inhibit pathological pain in mice. Proc. Natl. Acad. Sci. USA107, 15933–15938 (2010). ArticleCAS Google Scholar
Davidson, S., Zhang, X., Khasabov, S.G., Simone, D.A. & Giesler, G.J. Jr. Relief of itch by scratching: state-dependent inhibition of primate spinothalamic tract neurons. Nat. Neurosci.12, 544–546 (2009). ArticleCAS Google Scholar
Ross, S.E. et al. Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neuron65, 886–898 (2010). ArticleCAS Google Scholar
Sun, Y.G. & Chen, Z.F. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature448, 700–703 (2007). ArticleCAS Google Scholar
Andriantsoanirina, V., Menard, D., Tuseo, L. & Durand, R. History and current status of Plasmodium falciparum antimalarial drug resistance in Madagascar. Scand. J. Infect. Dis.42, 22–32 (2010). ArticleCAS Google Scholar
Kremeyer, B. et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron66, 671–680 (2010). ArticleCAS Google Scholar