TRPA1 is required for histamine-independent, Mas-related G protein–coupled receptor–mediated itch (original) (raw)

References

  1. Ikoma, A., Steinhoff, M., Stander, S., Yosipovitch, G. & Schmelz, M. The neurobiology of itch. Nat. Rev. Neurosci. 7, 535–547 (2006).
    Article CAS Google Scholar
  2. Ajayi, A.A., Oluokun, A., Sofowora, O., Akinleye, A. & Ajayi, A.T. Epidemiology of antimalarial-induced pruritus in Africans. Eur. J. Clin. Pharmacol. 37, 539–540 (1989).
    Article CAS Google Scholar
  3. Reddy, V.B., Iuga, A.O., Shimada, S.G., LaMotte, R.H. & Lerner, E.A. Cowhage-evoked itch is mediated by a novel cysteine protease: a ligand of protease-activated receptors. J. Neurosci. 28, 4331–4335 (2008).
    Article CAS Google Scholar
  4. Johanek, L.M. et al. A role for polymodal C-fiber afferents in nonhistaminergic itch. J. Neurosci. 28, 7659–7669 (2008).
    Article CAS Google Scholar
  5. Namer, B. et al. Separate peripheral pathways for pruritus in man. J. Neurophysiol. 100, 2062–2069 (2008).
    Article Google Scholar
  6. Sardana, N., Santos, C., Lehman, E. & Craig, T. A comparison of intranasal corticosteroid, leukotriene receptor antagonist, and topical antihistamine in reducing symptoms of perennial allergic rhinitis as assessed through the Rhinitis Severity Score. Allergy Asthma Proc. 31, 5–9 (2010).
    Article CAS Google Scholar
  7. Nathan, R.A. Management of patients with allergic rhinitis and asthma: literature review. South. Med. J. 102, 935–941 (2009).
    Article Google Scholar
  8. Steinhoff, M. et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J. Neurosci. 23, 6176–6180 (2003).
    Article CAS Google Scholar
  9. Rukwied, R., Lischetzki, G., McGlone, F., Heyer, G. & Schmelz, M. Mast cell mediators other than histamine induce pruritus in atopic dermatitis patients: a dermal microdialysis study. Br. J. Dermatol. 142, 1114–1120 (2000).
    Article CAS Google Scholar
  10. Tsujii, K., Andoh, T., Ui, H., Lee, J.B. & Kuraishi, Y. Involvement of tryptase and proteinase-activated receptor-2 in spontaneous itch-associated response in mice with atopy-like dermatitis. J. Pharmacol. Sci. 109, 388–395 (2009).
    Article CAS Google Scholar
  11. Howarth, P.H., Salagean, M. & Dokic, D. Allergic rhinitis: not purely a histamine-related disease. Allergy 55 (suppl 64), 7–16 (2000).
    Article Google Scholar
  12. Davidson, S. et al. The itch-producing agents histamine and cowhage activate separate populations of primate spinothalamic tract neurons. J. Neurosci. 27, 10007–10014 (2007).
    Article CAS Google Scholar
  13. Schmelz, M. et al. Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J. Neurophysiol. 89, 2441–2448 (2003).
    Article CAS Google Scholar
  14. Sun, Y.G. et al. Cellular basis of itch sensation. Science 325, 1531–1534 (2009).
    Article CAS Google Scholar
  15. Imamachi, N. et al. TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proc. Natl. Acad. Sci. USA 106, 11330–11335 (2009).
    Article CAS Google Scholar
  16. Liu, Q. et al. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139, 1353–1365 (2009).
    Article Google Scholar
  17. Lee, M.G. et al. Agonists of the MAS-related gene (Mrgs) orphan receptors as novel mediators of mast cell–sensory nerve interactions. J. Immunol. 180, 2251–2255 (2008).
    Article CAS Google Scholar
  18. Jordt, S.E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004).
    Article CAS Google Scholar
  19. Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004).
    Article CAS Google Scholar
  20. Parsons, M.E. & Ganellin, C.R. Histamine and its receptors. Br. J. Pharmacol. 147, S127–S135 (2006).
    Article CAS Google Scholar
  21. Julius, D., MacDermott, A.B., Axel, R. & Jessell, T.M. Molecular characterization of a functional cDNA encoding the serotonin 1c receptor. Science 241, 558–564 (1988).
    Article CAS Google Scholar
  22. Zylka, M.J., Dong, X., Southwell, A.L. & Anderson, D.J. Atypical expansion in mice of the sensory neuron-specific Mrg G protein–coupled receptor family. Proc. Natl. Acad. Sci. USA 100, 10043–10048 (2003).
    Article CAS Google Scholar
  23. Han, S.K. et al. Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide–related peptides through the Galpha q/11 pathway. Proc. Natl. Acad. Sci. USA 99, 14740–14745 (2002).
    Article CAS Google Scholar
  24. McNamara, C.R. et al. TRPA1 mediates formalin-induced pain. Proc. Natl. Acad. Sci. USA 104, 13525–13530 (2007).
    Article CAS Google Scholar
  25. Eid, S.R. et al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol. Pain 4, 48 (2008).
    Article Google Scholar
  26. Kerstein, P.C., del Camino, D., Moran, M.M. & Stucky, C.L. Pharmacological blockade of TRPA1 inhibits mechanical firing in nociceptors. Mol. Pain 5, 19 (2009).
    Article Google Scholar
  27. Kim, B.M., Lee, S.H., Shim, W.S. & Oh, U. Histamine-induced Ca2+ influx via the PLA2/lipoxygenase/TRPV1 pathway in rat sensory neurons. Neurosci. Lett. 361, 159–162 (2004).
    Article CAS Google Scholar
  28. Shim, W.S. et al. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J. Neurosci. 27, 2331–2337 (2007).
    Article CAS Google Scholar
  29. Bautista, D.M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006).
    Article CAS Google Scholar
  30. Wang, S. et al. Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 131, 1241–1251 (2008).
    Article Google Scholar
  31. Han, S.K., Mancino, V. & Simon, M.I. Phospholipase Cβ 3 mediates the scratching response activated by the histamine H1 receptor on C-fiber nociceptive neurons. Neuron 52, 691–703 (2006).
    Article CAS Google Scholar
  32. Montell, C. In search of the holy grail for Drosophila TRP. Neuron 58, 825–827 (2008).
    Article CAS Google Scholar
  33. Dascal, N. Ion-channel regulation by G proteins. Trends Endocrinol. Metab. 12, 391–398 (2001).
    Article CAS Google Scholar
  34. Rishal, I., Porozov, Y., Yakubovich, D., Varon, D. & Dascal, N. Gβγ-dependent and Gβγ-independent basal activity of G protein–activated K+ channels. J. Biol. Chem. 280, 16685–16694 (2005).
    Article CAS Google Scholar
  35. Zhou, Y., Sondek, J. & Harden, T.K. Activation of human phospholipase C-η2 by Gβγ. Biochemistry 47, 4410–4417 (2008).
    Article CAS Google Scholar
  36. Bianchi, E., Norcini, M., Smrcka, A. & Ghelardini, C. Supraspinal Gβγ-dependent stimulation of PLCβ3 originating from G inhibitory protein-μ opioid receptor-coupling is necessary for morphine induced acute hyperalgesia. J. Neurochem. 111, 171–180 (2009).
    Article CAS Google Scholar
  37. Shimada, S.G. & LaMotte, R.H. Behavioral differentiation between itch and pain in mouse. Pain 139, 681–687 (2008).
    Article Google Scholar
  38. Yosipovitch, G. & Fleisher, A. Itch asscociated with skin disease: Advances in pathophysiology and emerging therapies. Am. J. Clin. Dermatol. 4, 617–622 (2003).
    Article Google Scholar
  39. Abila, B., Ezeamuzie, I.C., Igbigbi, P.S., Ambakederemo, A.W. & Asomugha, L. Effects of two antihistamines on chloroquine and histamine induced weal and flare in healthy African volunteers. Afr. J. Med. Med. Sci. 23, 139–142 (1994).
    CAS PubMed Google Scholar
  40. Zurborg, S., Yurgionas, B., Jira, J.A., Caspani, O. & Heppenstall, P.A. Direct activation of the ion channel TRPA1 by Ca2+. Nat. Neurosci. 10, 277–279 (2007).
    Article CAS Google Scholar
  41. Wang, Y.Y., Chang, R.B., Waters, H.N., McKemy, D.D. & Liman, E.R. The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J. Biol. Chem. 283, 32691–32703 (2008).
    Article CAS Google Scholar
  42. Mathews, J.L., Smrcka, A.V. & Bidlack, J.M.A. Novel G Gβγ-subunit inhibitor selectively modulates μ-opioid–dependent antinociception and attenuates acute morphine-induced antinociceptive tolerance and dependence. J. Neurosci. 28, 12183–12189 (2008).
    Article CAS Google Scholar
  43. Rousset, M., Cens, T., Gouin-Charnet, A., Scamps, F. & Charnet, P. Ca2+ and phosphatidylinositol 4,5-bisphosphate stabilize a Gβγ-sensitive state of CaV2 Ca2+ channels. J. Biol. Chem. 279, 14619–14630 (2004).
    Article CAS Google Scholar
  44. Ma, Q. Labeled lines meet and talk: population coding of somatic sensations. J. Clin. Invest. 120, 3773–3778 (2010).
    Article CAS Google Scholar
  45. Guan, Y. et al. Mas-related G protein–coupled receptors inhibit pathological pain in mice. Proc. Natl. Acad. Sci. USA 107, 15933–15938 (2010).
    Article CAS Google Scholar
  46. Davidson, S., Zhang, X., Khasabov, S.G., Simone, D.A. & Giesler, G.J. Jr. Relief of itch by scratching: state-dependent inhibition of primate spinothalamic tract neurons. Nat. Neurosci. 12, 544–546 (2009).
    Article CAS Google Scholar
  47. Ross, S.E. et al. Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neuron 65, 886–898 (2010).
    Article CAS Google Scholar
  48. Sun, Y.G. & Chen, Z.F. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 448, 700–703 (2007).
    Article CAS Google Scholar
  49. Andriantsoanirina, V., Menard, D., Tuseo, L. & Durand, R. History and current status of Plasmodium falciparum antimalarial drug resistance in Madagascar. Scand. J. Infect. Dis. 42, 22–32 (2010).
    Article CAS Google Scholar
  50. Kremeyer, B. et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66, 671–680 (2010).
    Article CAS Google Scholar

Download references