Reversible large-scale modification of cortical networks during neuroprosthetic control (original) (raw)

References

  1. Wise, S.P., Moody, S.L., Blomstrom, K.J. & Mitz, A.R. Changes in motor cortical activity during visuomotor adaptation. Exp. Brain Res. 121, 285–299 (1998).
    Article CAS Google Scholar
  2. Paz, R. & Vaadia, E. Learning-induced improvement in encoding and decoding of specific movement directions by neurons in the primary motor cortex. PLoS Biol. 2, e45 (2004).
    Article Google Scholar
  3. Paz, R., Boraud, T., Natan, C., Bergman, H. & Vaadia, E. Preparatory activity in motor cortex reflects learning of local visuomotor skills. Nat. Neurosci. 6, 882–890 (2003).
    Article CAS Google Scholar
  4. Gandolfo, F., Li, C., Benda, B.J., Schioppa, C.P. & Bizzi, E. Cortical correlates of learning in monkeys adapting to a new dynamical environment. Proc. Natl. Acad. Sci. USA 97, 2259–2263 (2000).
    Article CAS Google Scholar
  5. Li, C.S., Padoa-Schioppa, C. & Bizzi, E. Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron 30, 593–607 (2001).
    Article CAS Google Scholar
  6. Padoa-Schioppa, C., Li, C.S. & Bizzi, E. Neuronal correlates of kinematics-to-dynamics transformation in the supplementary motor area. Neuron 36, 751–765 (2002).
    Article CAS Google Scholar
  7. Rokni, U., Richardson, A.G., Bizzi, E. & Seung, H.S. Motor learning with unstable neural representations. Neuron 54, 653–666 (2007).
    Article CAS Google Scholar
  8. Arce, F., Novick, I., Mandelblat-Cerf, Y. & Vaadia, E. Neuronal correlates of memory formation in motor cortex after adaptation to force field. J. Neurosci. 30, 9189–9198 (2010).
    Article CAS Google Scholar
  9. Chapin, J.K., Moxon, K.A., Markowitz, R.S. & Nicolelis, M.A. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat. Neurosci. 2, 664–670 (1999).
    Article CAS Google Scholar
  10. Birbaumer, N. et al. A spelling device for the paralyzed. Nature 398, 297–298 (1999).
    Article CAS Google Scholar
  11. Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R. & Donoghue, J.P. Instant neural control of a movement signal. Nature 416, 141–142 (2002).
    Article CAS Google Scholar
  12. Taylor, D.M., Tillery, S.I. & Schwartz, A.B. Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002).
    Article CAS Google Scholar
  13. Carmena, J.M. et al. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1, e42 (2003).
    Article Google Scholar
  14. Musallam, S., Corneil, B.D., Greger, B., Scherberger, H. & Andersen, R.A. Cognitive control signals for neural prosthetics. Science 305, 258–262 (2004).
    Article CAS Google Scholar
  15. Wolpaw, J.R. & McFarland, D.J. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. USA 101, 17849–17854 (2004).
    Article CAS Google Scholar
  16. Leuthardt, E.C., Schalk, G., Wolpaw, J.R., Ojemann, J.G. & Moran, D.W. A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. 1, 63–71 (2004).
    Article Google Scholar
  17. Santhanam, G., Ryu, S.I., Yu, B.M., Afshar, A. & Shenoy, K.V. A high-performance brain-computer interface. Nature 442, 195–198 (2006).
    Article CAS Google Scholar
  18. Hochberg, L.R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).
    Article CAS Google Scholar
  19. Velliste, M., Perel, S., Spalding, M.C., Whitford, A.S. & Schwartz, A.B. Cortical control of a prosthetic arm for self-feeding. Nature 453, 1098–1101 (2008).
    Article CAS Google Scholar
  20. Galán, F. et al. A brain-actuated wheelchair: asynchronous and non-invasive Brain-computer interfaces for continuous control of robots. Clin. Neurophysiol. 119, 2159–2169 (2008).
    Article Google Scholar
  21. Moritz, C.T., Perlmutter, S.I. & Fetz, E.E. Direct control of paralyzed muscles by cortical neurons. Nature 456, 639–642 (2008).
    Article CAS Google Scholar
  22. Jarosiewicz, B. et al. Functional network reorganization during learning in a brain-computer interface paradigm. Proc. Natl. Acad. Sci. USA 105, 19486–19491 (2008).
    Article CAS Google Scholar
  23. Ganguly, K. & Carmena, J.M. Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol. 7, e1000153 (2009).
    Article Google Scholar
  24. Fetz, E.E. Volitional control of neural activity: implications for brain-computer interfaces. J. Physiol. (Lond.) 579, 571–579 (2007).
    Article CAS Google Scholar
  25. Humphrey, D.R., Schmidt, E.M. & Thompson, W.D. Predicting measures of motor performance from multiple cortical spike trains. Science 170, 758–762 (1970).
    Article CAS Google Scholar
  26. Ganguly, K. et al. Cortical representation of ipsilateral arm movements in monkey and man. J. Neurosci. 29, 12948–12956 (2009).
    Article CAS Google Scholar
  27. Ganguly, K. & Carmena, J.M. Neural correlates of skill acquisition with a cortical brain-machine interface. J. Mot. Behav. 42, 355–360 (2010).
    Article Google Scholar
  28. Chestek, C.A. et al. Single-neuron stability during repeated reaching in macaque premotor cortex. J. Neurosci. 27, 10742–10750 (2007).
    Article CAS Google Scholar
  29. Nicolelis, M.A. et al. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl. Acad. Sci. USA 100, 11041–11046 (2003).
    Article CAS Google Scholar
  30. Grossman, S.E., Fontanini, A., Wieskopf, J.S. & Katz, D.B. Learning-related plasticity of temporal coding in simultaneously recorded amygdala-cortical ensembles. J. Neurosci. 28, 2864–2873 (2008).
    Article CAS Google Scholar
  31. Greenberg, P.A. & Wilson, F.A. Functional stability of dorsolateral prefrontal neurons. J. Neurophysiol. 92, 1042–1055 (2004).
    Article Google Scholar
  32. Caminiti, R., Johnson, P.B. & Urbano, A. Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. J. Neurosci. 10, 2039–2058 (1990).
    Article CAS Google Scholar
  33. Ajemian, R. et al. Assessing the function of motor cortex: single-neuron models of how neural response is modulated by limb biomechanics. Neuron 58, 414–428 (2008).
    Article CAS Google Scholar
  34. Lebedev, M.A. et al. Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface. J. Neurosci. 25, 4681–4693 (2005).
    Article CAS Google Scholar
  35. Carmena, J.M., Lebedev, M.A., Henriquez, C.S. & Nicolelis, M.A. Stable ensemble performance with single-neuron variability during reaching movements in primates. J. Neurosci. 25, 10712–10716 (2005).
    Article CAS Google Scholar
  36. Scott, S.H. & Kalaska, J.F. Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex. J. Neurophysiol. 77, 826–852 (1997).
    Article CAS Google Scholar
  37. Nicolelis, M.A. & Lebedev, M.A. Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat. Rev. Neurosci. 10, 530–540 (2009).
    Article CAS Google Scholar
  38. Fetz, E.E. Operant conditioning of cortical unit activity. Science 163, 955–958 (1969).
    Article CAS Google Scholar
  39. Green, A.M. & Kalaska, J.F. Learning to move machines with the mind. Trends Neurosci. 34, 61–75 (2011).
    Article CAS Google Scholar
  40. Lebedev, M.A. et al. Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface. J. Neurosci. 25, 4681–4693 (2005).
    Article CAS Google Scholar
  41. Fetz, E.E. & Baker, M.A. Operantly conditioned patterns on precentral unit activity and correlated responses in adjacent cells and contralateral muscles. J. Neurophysiol. 36, 179–204 (1973).
    Article CAS Google Scholar
  42. Legenstein, R., Pecevski, D. & Maass, W. A learning theory for reward-modulated spike timing–dependent plasticity with application to biofeedback. PLoS Comput. Biol. 4, e1000180 (2008).
    Article Google Scholar
  43. Davidson, A.G., Chan, V., O'Dell, R. & Schieber, M.H. Rapid changes in throughput from single motor cortex neurons to muscle activity. Science 318, 1934–1937 (2007).
    Article CAS Google Scholar
  44. Georgopoulos, A.P., Schwartz, A.B. & Kettner, R.E. Neuronal population coding of movement direction. Science 233, 1416–1419 (1986).
    Article CAS Google Scholar
  45. Briggman, K.L., Abarbanel, H.D. & Kristan, W.B. Jr. Optical imaging of neuronal populations during decision-making. Science 307, 896–901 (2005).
    Article CAS Google Scholar
  46. Churchland, M.M., Yu, B.M., Sahani, M. & Shenoy, K.V. Techniques for extracting single-trial activity patterns from large-scale neural recordings. Curr. Opin. Neurobiol. 17, 609–618 (2007).
    Article CAS Google Scholar

Download references