The toxic Aβ oligomer and Alzheimer's disease: an emperor in need of clothes (original) (raw)
Campioni, S. et al. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat. Chem. Biol.6, 140–147 (2010). ArticleCASPubMed Google Scholar
Hardy, J. & Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science297, 353–356 (2002). ArticleCASPubMed Google Scholar
Karran, E., Mercken, M. & De Strooper, B. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov.10, 698–712 (2011). ArticleCASPubMed Google Scholar
De Strooper, B. Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiol. Rev.90, 465–494 (2010). ArticleCASPubMed Google Scholar
Castellano, J.M. et al. Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci. Transl. Med.3, 89ra57 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cerf, E., Gustot, A., Goormaghtigh, E., Ruysschaert, J.M. & Raussens, V. High ability of apolipoprotein E4 to stabilize amyloid-beta peptide oligomers, the pathological entities responsible for Alzheimer's disease. FASEB J.25, 1585–1595 (2011). ArticleCASPubMed Google Scholar
Shen, J. & Kelleher, R.J. III. The presenilin hypothesis of Alzheimer's disease: evidence for a loss-of-function pathogenic mechanism. Proc. Natl. Acad. Sci. USA104, 403–409 (2007). ArticleCASPubMed Google Scholar
Perrin, R.J., Fagan, A.M. & Holtzman, D.M. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature461, 916–922 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pike, C.J., Walencewicz, A.J., Glabe, C.G. & Cotman, C.W. In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res.563, 311–314 (1991). ArticleCASPubMed Google Scholar
Harper, J.D., Wong, S.S., Lieber, C.M. & Lansbury, P.T. Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem. Biol.4, 119–125 (1997). ArticleCASPubMed Google Scholar
Walsh, D.M., Lomakin, A., Benedek, G.B., Condron, M.M. & Teplow, D.B. Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J. Biol. Chem.272, 22364–22372 (1997). ArticleCASPubMed Google Scholar
Oda, T. et al. Clusterin (apoJ) alters the aggregation of amyloid beta-peptide (A beta 1-42) and forms slowly sedimenting A beta complexes that cause oxidative stress. Exp. Neurol.136, 22–31 (1995). ArticleCASPubMed Google Scholar
Lambert, M.P. et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA95, 6448–6453 (1998). ArticleCASPubMedPubMed Central Google Scholar
Walsh, D.M. et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature416, 535–539 (2002). ArticleCASPubMed Google Scholar
McLean, C.A. et al. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann. Neurol.46, 860–866 (1999). ArticleCASPubMed Google Scholar
Mc Donald, J.M. et al. The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia. Brain133, 1328–1341 (2010). ArticlePubMedPubMed Central Google Scholar
Nilsberth, C. et al. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril formation. Nat. Neurosci.4, 887–893 (2001). ArticleCASPubMed Google Scholar
Tomiyama, T. et al. A new amyloid beta variant favoring oligomerization in Alzheimer's-type dementia. Ann. Neurol.63, 377–387 (2008). ArticleCASPubMed Google Scholar
Kumar, S. et al. Extracellular phosphorylation of the amyloid beta-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer's disease. EMBO J.30, 2255–2265 (2011). ArticleCASPubMedPubMed Central Google Scholar
Jarrett, J.T., Berger, E.P. & Lansbury, P.T. Jr. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry32, 4693–4697 (1993). ArticleCASPubMed Google Scholar
Portelius, E. et al. Distinct cerebrospinal fluid amyloid beta peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer's disease. Mol. Neurodegener.5, 2 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Lee, J., Culyba, E.K., Powers, E.T. & Kelly, J.W. Amyloid-beta forms fibrils by nucleated conformational conversion of oligomers. Nat. Chem. Biol.7, 602–609 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bitan, G., Fradinger, E.A., Spring, S.M. & Teplow, D.B. Neurotoxic protein oligomers–what you see is not always what you get. Amyloid12, 88–95 (2005). ArticlePubMed Google Scholar
Hepler, R.W. et al. Solution state characterization of amyloid beta-derived diffusible ligands. Biochemistry45, 15157–15167 (2006). ArticleCASPubMed Google Scholar
Wogulis, M. et al. Nucleation-dependent polymerization is an essential component of amyloid-mediated neuronal cell death. J. Neurosci.25, 1071–1080 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kuperstein, I. et al. Neurotoxicity of Alzheimer's disease Abeta peptides is induced by small changes in the Abeta42 to Abeta40 ratio. EMBO J.29, 3408–3420 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cleary, J.P. et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat. Neurosci.8, 79–84 (2005). ArticleCASPubMed Google Scholar
Ittner, L.M. et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell142, 387–397 (2010). ArticleCASPubMed Google Scholar
Li, S. et al. Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron62, 788–801 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wu, H.Y. et al. Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J. Neurosci.30, 2636–2649 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jo, J. et al. Abeta(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3beta. Nat. Neurosci.14, 545–547 (2011). ArticleCASPubMed Google Scholar
Hardy, J. The amyloid hypothesis for Alzheimer's disease: a critical reappraisal. J. Neurochem.110, 1129–1134 (2009). ArticleCASPubMed Google Scholar
Shankar, G.M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med.14, 837–842 (2008). ArticleCASPubMedPubMed Central Google Scholar
Noguchi, A. et al. Isolation and characterization of patient-derived, toxic, high mass amyloid beta-protein (Abeta) assembly from Alzheimer disease brains. J. Biol. Chem.284, 32895–32905 (2009). ArticleCASPubMedPubMed Central Google Scholar
Matsumura, S. et al. Two distinct amyloid β-protein (Aβ) assembly pathways leading to oligomers and fibrils identified by combined fluorescence correlation spectroscopy, morphology and toxicity analyses. J. Biol. Chem. (2011).
Shankar, G.M. et al. Biochemical and immunohistochemical analysis of an Alzheimer's disease mouse model reveals the presence of multiple cerebral Abeta assembly forms throughout life. Neurobiol. Dis.36, 293–302 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lesné, S. et al. A specific amyloid-beta protein assembly in the brain impairs memory. Nature440, 352–357 (2006). ArticleCASPubMed Google Scholar
Hartley, D.M. et al. Transglutaminase induces protofibril-like amyloid beta-protein assemblies that are protease-resistant and inhibit long-term potentiation. J. Biol. Chem.283, 16790–16800 (2008). ArticleCASPubMedPubMed Central Google Scholar
Smith, D.P. et al. Copper-mediated amyloid-beta toxicity is associated with an intermolecular histidine bridge. J. Biol. Chem.281, 15145–15154 (2006). ArticleCASPubMed Google Scholar
Galeazzi, L., Ronchi, P., Franceschi, C. & Giunta, S. In vitro peroxidase oxidation induces stable dimers of beta-amyloid (1-42) through dityrosine bridge formation. Amyloid6, 7–13 (1999). ArticleCASPubMed Google Scholar
Kayed, R. et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol. Neurodegener.2, 18 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Caughey, B. & Lansbury, P.T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci.26, 267–298 (2003). ArticleCASPubMed Google Scholar
Hu, X. et al. Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc. Natl. Acad. Sci. USA106, 20324–20329 (2009). ArticleCASPubMedPubMed Central Google Scholar
Townsend, M., Shankar, G.M., Mehta, T., Walsh, D.M. & Selkoe, D.J. Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J. Physiol. (Lond.)572, 477–492 (2006). ArticleCAS Google Scholar
Reed, M.N. et al. Cognitive effects of cell-derived and synthetically derived Abeta oligomers. Neurobiol. Aging32, 1784–1794 (2011). ArticleCASPubMed Google Scholar
Jin, M. et al. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. USA108, 5819–5824 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yamin, G. NMDA receptor-dependent signaling pathways that underlie amyloid beta-protein disruption of LTP in the hippocampus. J. Neurosci. Res.87, 1729–1736 (2009). ArticleCASPubMed Google Scholar
Dineley, K.T. et al. Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer's disease. J. Neurosci.21, 4125–4133 (2001). ArticleCASPubMedPubMed Central Google Scholar
Giuffrida, M.L. et al. The monomer state of beta-amyloid: where the Alzheimer's disease protein meets physiology. Rev. Neurosci.21, 83–93 (2010). ArticleCASPubMed Google Scholar
Soucek, T., Cumming, R., Dargusch, R., Maher, P. & Schubert, D. The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron39, 43–56 (2003). ArticleCASPubMed Google Scholar
Thathiah, A. & De Strooper, B. G protein-coupled receptors, cholinergic dysfunction, and Abeta toxicity in Alzheimer's disease. Sci. Signal.2, re8 (2009). ArticlePubMed Google Scholar
Laurén, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W. & Strittmatter, S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature457, 1128–1132 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Ross, C.A. & Poirier, M.A. Opinion: What is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell Biol.6, 891–898 (2005). ArticleCASPubMed Google Scholar
Collinge, J. & Clarke, A.R. A general model of prion strains and their pathogenicity. Science318, 930–936 (2007). ArticleCASPubMed Google Scholar
Meyer-Luehmann, M. et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science313, 1781–1784 (2006). ArticleCASPubMed Google Scholar
Morales, R., Duran-Aniotz, C., Castilla, J., Estrada, L.D. & Soto, C. De novo induction of amyloid-beta deposition in vivo. Mol. Psychiatry (2011).
Baker, H.F., Ridley, R.M., Duchen, L.W., Crow, T.J. & Bruton, C.J. Induction of beta (A4)-amyloid in primates by injection of Alzheimer's disease brain homogenate. Comparison with transmission of spongiform encephalopathy. Mol. Neurobiol.8, 25–39 (1994). ArticleCASPubMed Google Scholar
Aguzzi, A. & Calella, A.M. Prions: protein aggregation and infectious diseases. Physiol. Rev.89, 1105–1152 (2009). ArticleCASPubMed Google Scholar
Petkova, A.T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science307, 262–265 (2005). ArticleCASPubMed Google Scholar
Anonymous. State of aggregation. Nat. Neurosci.14, 399 (2011).
Ono, K., Condron, M.M. & Teplow, D.B. Structure–neurotoxicity relationships of amyloid β-protein oligomers. Proc. Natl. Acad. Sci. USA106, 14745–14750 (2009). ArticleCASPubMedPubMed Central Google Scholar
Liu, C. et al. Characteristics of amyloid-related oligomers revealed by crystal structures of macrocyclic beta-sheet mimics. J. Am. Chem. Soc.133, 6736–6744 (2011). ArticleCASPubMedPubMed Central Google Scholar
Schlenzig, D. et al. Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides. Biochemistry48, 7072–7078 (2009). ArticleCASPubMed Google Scholar
Bleiholder, C., Dupuis, N.F., Wyttenbach, T. & Bowers, M.T. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to beta-sheet in amyloid fibril formation. Nat. Chem.3, 172–177 (2011). ArticleCASPubMed Google Scholar
Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science300, 486–489 (2003). ArticleCASPubMed Google Scholar
Shughrue, P.J. et al. Anti-ADDL antibodies differentially block oligomer binding to hippocampal neurons. Neurobiol. Aging31, 189–202 (2010). ArticleCASPubMed Google Scholar
O'Nuallain, B. et al. A monoclonal antibody against synthetic Abeta dimer assemblies neutralizes brain-derived synaptic plasticity-disrupting Abeta. J. Neurochem.119, 189–201 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lambert, M.P. et al. Vaccination with soluble Abeta oligomers generates toxicity-neutralizing antibodies. J. Neurochem.79, 595–605 (2001). ArticleCASPubMed Google Scholar
Lambert, M.P. et al. Monoclonal antibodies that target pathological assemblies of Abeta. J. Neurochem.100, 23–35 (2007). ArticleCASPubMed Google Scholar
Lee, E.B. et al. Targeting amyloid-beta peptide (Abeta) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Abeta precursor protein (APP) transgenic mice. J. Biol. Chem.281, 4292–4299 (2006). ArticleCASPubMed Google Scholar
Moretto, N. et al. Conformation-sensitive antibodies against alzheimer amyloid-beta by immunization with a thioredoxin-constrained B-cell epitope peptide. J. Biol. Chem.282, 11436–11445 (2007). ArticleCASPubMed Google Scholar
Schupf, N. et al. Peripheral Abeta subspecies as risk biomarkers of Alzheimer's disease. Proc. Natl. Acad. Sci. USA105, 14052–14057 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gardberg, A.S. et al. Molecular basis for passive immunotherapy of Alzheimer's disease. Proc. Natl. Acad. Sci. USA104, 15659–15664 (2007). ArticleCASPubMedPubMed Central Google Scholar
Englund, H. et al. Sensitive ELISA detection of amyloid-beta protofibrils in biological samples. J. Neurochem.103, 334–345 (2007). CASPubMed Google Scholar
Lord, A. et al. An amyloid-beta protofibril-selective antibody prevents amyloid formation in a mouse model of Alzheimer's disease. Neurobiol. Dis.36, 425–434 (2009). ArticleCASPubMed Google Scholar
Hillen, H. et al. Generation and therapeutic efficacy of highly oligomer-specific beta-amyloid antibodies. J. Neurosci.30, 10369–10379 (2010). ArticleCASPubMedPubMed Central Google Scholar
O'Nuallain, B. & Wetzel, R. Conformational Abs recognizing a generic amyloid fibril epitope. Proc. Natl. Acad. Sci. USA99, 1485–1490 (2002). ArticleCASPubMedPubMed Central Google Scholar
Barghorn, S. et al. Globular amyloid beta-peptide oligomer - a homogenous and stable neuropathological protein in Alzheimer's disease. J. Neurochem.95, 834–847 (2005). ArticleCASPubMed Google Scholar
van Helmond, Z., Heesom, K. & Love, S. Characterisation of two antibodies to oligomeric Abeta and their use in ELISAs on human brain tissue homogenates. J. Neurosci. Methods176, 206–212 (2009). ArticleCASPubMed Google Scholar
Habicht, G. et al. Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing Abeta protofibrils. Proc. Natl. Acad. Sci. USA104, 19232–19237 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lafaye, P., Achour, I., England, P., Duyckaerts, C. & Rougeon, F. Single-domain antibodies recognize selectively small oligomeric forms of amyloid beta, prevent Abeta-induced neurotoxicity and inhibit fibril formation. Mol. Immunol.46, 695–704 (2009). ArticleCASPubMed Google Scholar
Meli, G., Visintin, M., Cannistraci, I. & Cattaneo, A. Direct in vivo intracellular selection of conformation-sensitive antibody domains targeting Alzheimer's amyloid-beta oligomers. J. Mol. Biol.387, 584–606 (2009). ArticleCASPubMed Google Scholar
Zameer, A., Kasturirangan, S., Emadi, S., Nimmagadda, S.V. & Sierks, M.R. Anti-oligomeric Abeta single-chain variable domain antibody blocks Abeta-induced toxicity against human neuroblastoma cells. J. Mol. Biol.384, 917–928 (2008). ArticleCASPubMed Google Scholar
Sandberg, A. et al. Stabilization of neurotoxic Alzheimer amyloid-beta oligomers by protein engineering. Proc. Natl. Acad. Sci. USA107, 15595–15600 (2010). ArticleCASPubMedPubMed Central Google Scholar
Villemagne, V.L. et al. Blood-borne amyloid-beta dimer correlates with clinical markers of Alzheimer's disease. J. Neurosci.30, 6315–6322 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zempel, H., Thies, E., Mandelkow, E. & Mandelkow, E.M. Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J. Neurosci.30, 11938–11950 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shipton, O.A. et al. Tau protein is required for amyloid β-induced impairment of hippocampal long-term potentiation. J. Neurosci.31, 1688–1692 (2011). ArticleCASPubMedPubMed Central Google Scholar
De Felice, F.G. et al. Alzheimer's disease-type neuronal tau hyperphosphorylation induced by A beta oligomers. Neurobiol. Aging29, 1334–1347 (2008). ArticleCASPubMed Google Scholar
Wang, X., Perry, G., Smith, M.A. & Zhu, X. Amyloid-beta-derived diffusible ligands cause impaired axonal transport of mitochondria in neurons. Neurodegener. Dis.7, 56–59 (2010). ArticleCASPubMedPubMed Central Google Scholar
Demuro, A. et al. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem.280, 17294–17300 (2005). ArticleCASPubMed Google Scholar
Deshpande, A., Mina, E., Glabe, C. & Busciglio, J. Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons. J. Neurosci.26, 6011–6018 (2006). ArticleCASPubMedPubMed Central Google Scholar
Xia, W. et al. Enhanced production and oligomerization of the 42-residue amyloid beta-protein by Chinese hamster ovary cells stably expressing mutant presenilins. J. Biol. Chem.272, 7977–7982 (1997). ArticleCASPubMed Google Scholar
Podlisny, M.B. et al. Aggregation of secreted amyloid beta-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J. Biol. Chem.270, 9564–9570 (1995). ArticleCASPubMed Google Scholar
Roher, A.E. et al. Morphology and toxicity of Abeta-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer's disease. J. Biol. Chem.271, 20631–20635 (1996). ArticleCASPubMed Google Scholar
Hoshi, M. et al. Spherical aggregates of beta-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3beta. Proc. Natl. Acad. Sci. USA100, 6370–6375 (2003). ArticleCASPubMedPubMed Central Google Scholar