Serotonergic transcriptional networks and potential importance to mental health (original) (raw)
Gaddum, J.H. Drugs antagonistic to 5-hydroxytryptamine. in Ciba Foundation Symposium on Hypertension, 75–77 (Little, Brown and Co., 1954).
Woolley, D.W. & Shaw, E. A biochemical and pharmacological suggestion about certain mental disorders. Proc. Natl. Acad. Sci. USA40, 228–231 (1954). CASPubMedPubMed Central Google Scholar
Muller, C.P. & Jacobs, B.L. Handbook of the Behavioral Neurobiology of Serotonin (Academic Press, 2010).
Ishimura, K. et al. Quantitative analysis of the distribution of serotonin-immunoreactive cell bodies in the mouse brain. Neurosci. Lett.91, 265–270 (1988). CASPubMed Google Scholar
Baker, K.G. et al. Cytoarchitecture of serotonin-synthesizing neurons in the pontine tegmentum of the human brain. Synapse7, 301–320 (1991). CASPubMed Google Scholar
Hornung, J.P. The human raphe nuclei and the serotonergic system. J. Chem. Neuroanat.26, 331–343 (2003). CASPubMed Google Scholar
Gaspar, P., Cases, O. & Maroteaux, L. The developmental role of serotonin: news from mouse molecular genetics. Nat. Rev. Neurosci.4, 1002–1012 (2003). CASPubMed Google Scholar
Goridis, C. & Rohrer, H. Specification of catecholaminergic and serotonergic neurons. Nat. Rev. Neurosci.3, 531–541 (2002). CASPubMed Google Scholar
Cordes, S.P. Molecular genetics of the early development of hindbrain serotonergic neurons. Clin. Genet.68, 487–494 (2005). CASPubMed Google Scholar
Scott, M.M. & Deneris, E.S. Making and breaking serotonin neurons and autism. Int. J. Dev. Neurosci.23, 277–285 (2005). ArticleCASPubMed Google Scholar
Fernandez, S.P. & Gaspar, P. Investigating anxiety and depressive-like phenotypes in genetic mouse models of serotonin depletion. Neuropharmacology62, 144–154 (2012). CASPubMed Google Scholar
Flames, N. & Hobert, O. Transcriptional control of the terminal fate of monoaminergic neurons. Ann. Rev. Neurosci.34, 153–184 (2011). CASPubMed Google Scholar
Ben-Tabou de-Leon, S. & Davidson, E.H. Gene regulation: gene control network in development. Annu. Rev. Biophys. Biomol. Struct.36, 191 (2007). CASPubMed Google Scholar
Azmitia, E.C. & Gannon, P.J. The primate serotonergic system: a review of human and animal studies and a report on Macaca fascicularis. Adv. Neurol.43, 407–468 (1986). CASPubMed Google Scholar
Lidov, H.G.W. & Molliver, M.E. Immunohistochemical study of the development of serotonergic neurons in the rat CNS. Brain Res. Bull.9, 559–604 (1982). CASPubMed Google Scholar
Lillesaar, C., Tannhauser, B., Stigloher, C., Kremmer, E. & Bally-Cuif, L. The serotonergic phenotype is acquired by converging genetic mechanisms within the zebrafish central nervous system. Dev. Dyn.236, 1072–1084 (2007). CASPubMed Google Scholar
Wallace, J.A. & Lauder, J.M. Development of the serotonergic system in the rat embryo: an immunocytochemical study. Brain Res. Bull.10, 459–479 (1983). CASPubMed Google Scholar
Steinbusch, H.W.M. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience6, 557–618 (1981). CASPubMed Google Scholar
Pattyn, A. et al. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev.17, 729–737 (2003). CASPubMedPubMed Central Google Scholar
Lidov, H.G. & Molliver, M.E. An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain Res. Bull.8, 389–430 (1982). CASPubMed Google Scholar
Briscoe, J. et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic Hedgehog signaling. Nature398, 622–627 (1999). CASPubMed Google Scholar
Pattyn, A. et al. Ascl1/Mash1 is required for the development of central serotonergic neurons. Nat. Neurosci.7, 589–595 (2004). CASPubMed Google Scholar
Craven, S.E. et al. Gata2 specifies serotonergic neurons downstream of sonic hedgehog. Development131, 1165–1173 (2004). CASPubMed Google Scholar
Jacob, J. et al. Transcriptional repression coordinates the temporal switch from motor to serotonergic neurogenesis. Nat. Neurosci.10, 1433–1439 (2007). CASPubMed Google Scholar
Jacob, J. et al. Insm1 (IA-1) is an essential component of the regulatory network that specifies monoaminergic neuronal phenotypes in the vertebrate hindbrain. Development136, 2477–2485 (2009). CASPubMedPubMed Central Google Scholar
van Doorninck, J.H. et al. GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J. Neurosci.19, RC12 (1999). CASPubMed Google Scholar
Hendricks, T., Francis, N., Fyodorov, D. & Deneris, E. The ETS domain factor Pet-1 is an early and precise marker of central 5-HT neurons and interacts with a conserved element in serotonergic genes. J. Neurosci.19, 10348–10356 (1999). CASPubMedPubMed Central Google Scholar
Pfaar, H. et al. mPet-1, a mouse ETS-domain transcription factor, is expressed in central serotonergic neurons. Dev. Genes Evol.212, 43–46 (2002). CASPubMed Google Scholar
Cheng, L. et al. Lmx1b, Pet-1 and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J. Neurosci.23, 9961–9967 (2003). CASPubMedPubMed Central Google Scholar
Pattyn, A., Hirsch, M., Goridis, C. & Brunet, J.F. Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development127, 1349–1358 (2000). CASPubMed Google Scholar
Hirsch, M.R., Tiveron, M.C., Guillemot, F., Brunet, J.F. & Goridis, C. Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development125, 599–608 (1998). CASPubMed Google Scholar
Ding, Y.Q. et al. Lmx1b is essential for the development of serotonergic neurons. Nat. Neurosci.6, 933–938 (2003). CASPubMed Google Scholar
Tsai, F.Y. et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature371, 221–226 (1994). CASPubMed Google Scholar
Krueger, K.C. & Deneris, E.S. Serotonergic transcription of human FEV reveals direct GATA factor interactions and fate of Pet-1–deficient serotonin neuron precursors. J. Neurosci.28, 12748–12758 (2008). CASPubMedPubMed Central Google Scholar
Hobert, O., Carrera, I. & Stefanakis, N. The molecular and gene regulatory signature of a neuron. Trends Neurosci.33, 435–445 (2010). CASPubMedPubMed Central Google Scholar
Dai, J.X., Johnson, R.L. & Ding, Y.Q. Manifold functions of the Nail-Patella Syndrome gene Lmx1b in vertebrate development. Dev. Growth Differ.51, 241–250 (2009). CASPubMed Google Scholar
Zhao, Z.Q. et al. Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J. Neurosci.26, 12781–12788 (2006). CASPubMedPubMed Central Google Scholar
Osterberg, N. et al. Sim1 is a novel regulator in the differentiation of mouse dorsal raphe serotonergic neurons. PLoS ONE6, e19239 (2011). CASPubMedPubMed Central Google Scholar
Demarque, M. & Spitzer, N.C. Activity-dependent expression of Lmx1b regulates specification of serotonergic neurons modulating swimming behavior. Neuron67, 321–334 (2010). CASPubMedPubMed Central Google Scholar
Liu, C. et al. Pet-1 is required across different stages of life to regulate serotonergic function. Nat. Neurosci.13, 1190–1198 (2010). CASPubMedPubMed Central Google Scholar
Lima, F.B. et al. Stress sensitive female macaques have decreased fifth Ewing variant (Fev) and serotonin-related gene expression that is not reversed by citalopram. Neuroscience164, 676–691 (2009). CASPubMed Google Scholar
Maurer, P. et al. The ETS transcription factor Fev is specifically expressed in the human central serotonergic neurons. Neurosci. Lett.357, 215–218 (2004). CASPubMed Google Scholar
Iyo, A.H., Porter, B., Deneris, E.S. & Austin, M.C. Regional distribution and cellular localization of the ETS-domain transcription factor, FEV, mRNA in the human postmortem brain. Synapse57, 223–228 (2005). CASPubMedPubMed Central Google Scholar
Hendricks, T.J. et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron37, 233–247 (2003). CASPubMed Google Scholar
Kiyasova, V. et al. A genetically defined morphologically and functionally unique subset of 5-HT neurons in the mouse raphe nuclei. J. Neurosci.31, 2756–2768 (2011). CASPubMedPubMed Central Google Scholar
Wylie, C.J. et al. Distinct transcriptomes define rostral and caudal serotonin neurons. J. Neurosci.30, 670–684 (2010). CASPubMedPubMed Central Google Scholar
Scott, M.M. et al. A genetic approach to access serotonin neurons for in vivo and in vitro studies. Proc. Natl. Acad. Sci. USA102, 16472–16477 (2005). CASPubMedPubMed Central Google Scholar
Schmid, C., Schwarz, V. & Hutter, H. AST-1, a novel ETS-box transcription factor, controls axon guidance and pharynx development in C. elegans. Dev. Biol.293, 403–413 (2006). CASPubMed Google Scholar
Livet, J. et al. ETS gene PEA3 controls the central position and terminal arborization of specific motor neuron pools. Neuron35, 877–892 (2002). CASPubMed Google Scholar
Arber, S., Ladle, D.R., Lin, J.H., Frank, E. & Jessell, T.M. ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell101, 485–498 (2000). CASPubMed Google Scholar
Jacobsen, K.X., Czesak, M., Deria, M., Le Francois, B. & Albert, P.R. Region-specific regulation of 5-HT1A receptor expression by Pet-1–dependent mechanisms in vivo. J. Neurochem.116, 1066–1076 (2011). CASPubMedPubMed Central Google Scholar
Bonnin, A., Peng, W., Hewlett, W. & Levitt, P. Expression mapping of 5-HT1 serotonin receptor subtypes during fetal and early postnatal mouse forebrain development. Neuroscience141, 781–794 (2006). CASPubMed Google Scholar
Albert, P.R., Le Francois, B. & Millar, A.M. Transcriptional dysregulation of 5-HT1A autoreceptors in mental illness. Mol. Brain4, 21 (2011). CASPubMedPubMed Central Google Scholar
Song, N.N. et al. Adult raphe-specific deletion of lmx1b leads to central serotonin deficiency. PLoS ONE6, e15998 (2011). CASPubMedPubMed Central Google Scholar
Holmes, A. Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neurosci. Biobehav. Rev.32, 1293–1314 (2008). CASPubMedPubMed Central Google Scholar
Waider, J., Araragi, N., Gutknecht, L. & Lesch, K.P. Tryptophan hydroxylase-2 (TPH2) in disorders of cognitive control and emotion regulation: a perspective. Psychoneuroendocrinology36, 393–405 (2011). CASPubMed Google Scholar
Murphy, D.L. et al. How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. Neuropharmacology55, 932–960 (2008). CASPubMedPubMed Central Google Scholar
Beaulieu, J.M. et al. Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency. Proc. Natl. Acad. Sci. USA105, 1333–1338 (2008). CASPubMedPubMed Central Google Scholar
Richardson-Jones, J.W. et al. Serotonin-1A autoreceptors are necessary and sufficient for the normal formation of circuits underlying innate anxiety. J. Neurosci.31, 6008–6018 (2011). CASPubMedPubMed Central Google Scholar
Alenina, N. et al. Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc. Natl. Acad. Sci. USA106, 10332–10337 (2009). CASPubMedPubMed Central Google Scholar
Hariri, A.R. & Holmes, A. Genetics of emotional regulation: the role of the serotonin transporter in neural function. Trends Cogn. Sci.10, 182–191 (2006). PubMed Google Scholar
Lesch, K.P. et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science274, 1527–1531 (1996). CASPubMed Google Scholar
Wendland, J.R. et al. A novel, putative gain-of-function haplotype at SLC6A4 associates with obsessive-compulsive disorder. Hum. Mol. Genet.17, 717–723 (2008). CASPubMed Google Scholar
Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science301, 386–389 (2003). CASPubMed Google Scholar
Bennett, A.J. et al. Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol. Psychiatry7, 118–122 (2002). CASPubMed Google Scholar
Prasad, H.C. et al. Human serotonin transporter variants display altered sensitivity to protein kinase G and p38 mitogen-activated protein kinase. Proc. Natl. Acad. Sci. USA102, 11545–11550 (2005). CASPubMedPubMed Central Google Scholar
Sutcliffe, J.S. et al. Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. Am. J. Hum. Genet.77, 265–279 (2005). CASPubMedPubMed Central Google Scholar
Blakely, R.D. Overview: a rare opportunity or just one less reason to be depressed. Neuron48, 701–702, author reply 705–706 (2005). CASPubMed Google Scholar
Zhang, X. et al. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron45, 11–16 (2005). CASPubMed Google Scholar
Jacobsen, J.P. et al. Deficient serotonin neurotransmission and depression-like serotonin biomarker alterations in tryptophan hydroxylase 2 (Tph2) loss-of-function mice. Mol. Psychiatry published online, doi: 10.1038/mp.2011.50 (3 May 2011). PubMed Google Scholar
Bethea, C.L. et al. Effects of citalopram on serotonin and CRF systems in the midbrain of primates with differences in stress sensitivity. J. Chem. Neuroanat.41, 200–218 (2011). CASPubMedPubMed Central Google Scholar
Dai, J.X. et al. Enhanced contextual fear memory in central serotonin-deficient mice. Proc. Natl. Acad. Sci. USA105, 11981–11986 (2008). CASPubMedPubMed Central Google Scholar
Erickson, J.T., Shafer, G., Rossetti, M.D., Wilson, C.G. & Deneris, E.S. Arrest of 5-HT neuron differentiation delays respiratory maturation and impairs neonatal homeostatic responses to environmental challenges. Respir. Physiol. Neurobiol.159, 85–101 (2007). PubMedPubMed Central Google Scholar
Erickson, J.T. & Sposato, B.C. Autoresuscitation responses to hypoxia-induced apnea are delayed in newborn 5-HT–deficient Pet-1 homozygous mice. J. Appl. Physiol.106, 1785–1792 (2009). PubMed Google Scholar
Hodges, M.R., Best, S. & Richerson, G.B. Altered ventilatory and thermoregulatory control in male and female adult Pet-1 null mice. Respir. Physiol. Neurobiol.177, 133–140 (2011). CASPubMedPubMed Central Google Scholar
Hodges, M.R. et al. Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J. Neurosci.28, 2495–2505 (2008). CASPubMedPubMed Central Google Scholar
Hodges, M.R., Wehner, M., Aungst, J., Smith, J.C. & Richerson, G.B. Transgenic mice lacking serotonin neurons have severe apnea and high mortality during development. J. Neurosci.29, 10341–10349 (2009). CASPubMedPubMed Central Google Scholar
Zhao, Z.Q. et al. Mice lacking central serotonergic neurons show enhanced inflammatory pain and an impaired analgesic response to antidepressant drugs. J. Neurosci.27, 6045–6053 (2007). CASPubMedPubMed Central Google Scholar
Cummings, K.J. et al. Failed heart rate recovery at a critical age in 5-HT–deficient mice exposed to episodic anoxia: implications for SIDS. J. Appl. Physiol.111, 825–833 (2011). CASPubMedPubMed Central Google Scholar
Cummings, K.J., Li, A., Deneris, E.S. & Nattie, E.E. Bradycardia in serotonin-deficient _Pet-1_−/− mice: influence of respiratory dysfunction and hyperthermia over the first two postnatal weeks. Am. J. Physiol. Regul. Integr. Comp. Physiol.298, R1333–R1342 (2010). PubMedPubMed Central Google Scholar
Cummings, K.J., Li, A. & Nattie, E.E. Brainstem serotonin deficiency in the neonatal period: autonomic dysregulation during mild cold stress. J. Physiol. (Lond.)589, 2055–2064 (2011). CAS Google Scholar
Paulus, E.V. & Mintz, E.M. Developmental disruption of the serotonin system alters circadian rhythms. Physiol. Behav.105, 257–263 (2012). CASPubMed Google Scholar
Lerch-Haner, J.K., Frierson, D., Crawford, L.K., Beck, S.G. & Deneris, E.S. Serotonergic transcriptional programming determines maternal behavior and offspring survival. Nat. Neurosci.11, 1001–1003 (2008). CASPubMedPubMed Central Google Scholar
Phillips, P.C. Epistasis: the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet.9, 855–867 (2008). CASPubMedPubMed Central Google Scholar
Dreyer, S.D. et al. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat. Genet.19, 47–50 (1998). CASPubMed Google Scholar
Dunston, J.A. et al. The human LMX1B gene: transcription unit, promoter and pathogenic mutations. Genomics84, 565–576 (2004). CASPubMed Google Scholar
Chen, H. et al. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat. Genet.19, 51–55 (1998). PubMed Google Scholar
Vollrath, D. et al. Loss-of-function mutations in the LIM-homeodomain gene, LMX1B, in nail-patella syndrome. Hum. Mol. Genet.7, 1091–1098 (1998). CASPubMed Google Scholar
López-Arvizu, C. et al. Increased symptoms of attention deficit hyperactivity disorder and major depressive disorder symptoms in nail-patella syndrome: potential association with LMX1B loss-of-function. Am. J. Med. Genet. B. Neuropsychiatr. Genet.156B, 59–66 (2011). PubMed Google Scholar
Deneris, E.S. Molecular genetics of mouse serotonin neurons across the lifespan. Neuroscience197, 17–27 (2011). CASPubMed Google Scholar
Cirulli, E.T. & Goldstein, D.B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet.11, 415–425 (2010). CASPubMed Google Scholar
McClellan, J. & King, M.C. Genetic heterogeneity in human disease. Cell141, 210–217 (2010). CASPubMed Google Scholar
State, M.W. & Levitt, P. The conundrums of understanding genetic risks for autism spectrum disorders. Nat. Neurosci.14, 1499–1506 (2011). CASPubMedPubMed Central Google Scholar
Dolmazon, V. et al. Forced expression of LIM homeodomain transcription factor 1b enhances differentiation of mouse embryonic stem cells into serotonergic neurons. Stem Cells Dev.20, 301–311 (2010). PubMed Google Scholar
Tokuyama, Y., Ingram, S.L., Woodward, J.S. & Bethea, C.L. Functional characterization of rhesus embryonic stem cell–derived serotonin neurons. Exp. Biol. Med. (Maywood)235, 649–657 (2010). CAS Google Scholar
Akil, H. et al. Medicine. The future of psychiatric research: genomes and neural circuits. Science327, 1580–1581 (2010). PubMedPubMed Central Google Scholar