The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit (original) (raw)
References
Gorelick, P.B. et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke42, 2672–2713 (2011). ArticlePubMedPubMed Central Google Scholar
Brundel, M., de Bresser, J., van Dillen, J.J., Kappelle, L.J. & Biessels, G.J. Cerebral microinfarcts: a systematic review of neuropathological studies. J. Cereb. Blood Flow Metab.32, 425–436 (2012). ArticlePubMedPubMed Central Google Scholar
Smith, E.E., Schneider, J.A., Wardlaw, J.M. & Greenberg, S.M. Cerebral microinfarcts: the invisible lesions. Lancet Neurol.11, 272–282 (2012). ArticlePubMedPubMed Central Google Scholar
Vinters, H.V. et al. Neuropathologic substrates of ischemic vascular dementia. J. Neuropathol. Exp. Neurol.59, 931–945 (2000). ArticleCASPubMed Google Scholar
Kövari, E. et al. Cortical microinfarcts and demyelination affect cognition in cases at high risk for dementia. Neurology68, 927–931 (2007). ArticlePubMed Google Scholar
Arvanitakis, Z., Leurgans, S.E., Barnes, L.L., Bennett, D.A. & Schneider, J.A. Microinfarct pathology, dementia and cognitive systems. Stroke42, 722–727 (2011). ArticlePubMedPubMed Central Google Scholar
Jouvent, E. et al. Intracortical infarcts in small vessel disease: a combined 7-T postmortem MRI and neuropathological case study in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopthy. Stroke42, 27–30 (2011). Article Google Scholar
Blinder, P., Shih, A.Y., Rafie, C.A. & Kleinfeld, D. Topological basis for the robust distribution of blood to rodent neocortex. Proc. Natl. Acad. Sci. USA107, 12670–12675 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lauwers, F., Cassot, F., Lauwers-Cances, V., Puwanarajah, P. & Duvernoy, H. Morphometry of the human cerebral cortex microcirculation: general characteristics and space-related profiles. Neuroimage39, 936–948 (2008). ArticlePubMed Google Scholar
Bär, T. The vascular system of the cerebral cortex. Adv. Anat. Embryol. Cell Biol.59, 1–62 (1980). Article Google Scholar
Nishimura, N., Schaffer, C.B., Friedman, B., Lyden, P.D. & Kleinfeld, D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc. Natl. Acad. Sci. USA104, 365–370 (2007). ArticleCASPubMed Google Scholar
Nguyen, J., Nishimura, N., Fetcho, R.N., Iadecola, C. & Schaffer, C.B. Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries. J. Cereb. Blood Flow Metab.31, 2243–2254 (2011). ArticlePubMedPubMed Central Google Scholar
Sofroniew, M.V. & Vinters, H.V. Astrocytes: biology and pathology. Acta Neuropathol.119, 7–35 (2010). ArticlePubMed Google Scholar
Tsai, P.S. et al. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of cell nuclei and microvessels. J. Neurosci.29, 14553–14570 (2009). ArticleCASPubMedPubMed Central Google Scholar
Weber, B., Keller, A.L., Reichold, J. & Logothetis, N.K. The microvascular system of the striate and extrastriate visual cortex of the macaque. Cereb. Cortex18, 2318–2330 (2008). ArticlePubMed Google Scholar
Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature385, 161–165 (1997). ArticleCASPubMed Google Scholar
Kleinfeld, D., Mitra, P.P., Helmchen, F. & Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. USA95, 15741–15746 (1998). ArticleCASPubMedPubMed Central Google Scholar
Shih, A.Y. et al. Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke. J. Cereb. Blood Flow Metab.29, 738–751 (2009). ArticlePubMed Google Scholar
Shih, A.Y. et al. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J. Cereb. Blood Flow Metab.32, 1277–1309 (2012). ArticleCASPubMedPubMed Central Google Scholar
Schaffer, C.B. et al. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol.4, e22 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Nishimura, N. et al. Targeted insult to individual subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat. Methods3, 99–108 (2006). ArticleCASPubMed Google Scholar
Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA100, 7319–7324 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chen, B. et al. Severe blood brain barrier disruption and surrounding tissue injury. Stroke40, 666–674 (2009). CAS Google Scholar
Calabrese, V., Mancuso, C., Calvani, M., Rizzarelli, E. & Butterfield, D.A. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci.8, 766–775 (2007). ArticleCASPubMed Google Scholar
Unal Cevik, I. & Dalkara, T. Intravenously administered propidium iodide labels necrotic cells in the intact mouse brain after injury. Cell Death Differ.10, 928–929 (2003). ArticleCASPubMed Google Scholar
Soontornniyomkij, V. et al. Cerebral microinfarcts associated with severe cerebral beta-amyloid angiopathy. Brain Pathol.20, 459–467 (2010). ArticlePubMed Google Scholar
Siesjô, B.K. & Bengtsson, F. Calcium fluxes, calcium antagonists and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J. Cereb. Blood Flow Metab.9, 127–140 (1989). ArticlePubMed Google Scholar
Murphy, T.H., Li, P., Betts, K. & Liu, R. Two-photon imaging of stroke onset in vivo reveals that NMDA receptor–independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines. J. Neurosci.28, 1756–1772 (2008). ArticleCASPubMedPubMed Central Google Scholar
Orgogozo, J.M., Rigaud, A.S., Stoffler, A., Mobius, H.J. & Forette, F. Efficacy and safety of Memantine in patients with mild to moderate vascular dementia. Stroke33, 1834–1839 (2002). ArticleCASPubMed Google Scholar
Olivares, D. et al. N-Methyl D-Aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer's disease, vascular dementia and Parkinson's disease. Curr. Alzheimer Res.9, 746–758 (2012). ArticleCASPubMedPubMed Central Google Scholar
Woolsey, T.A. & Van Der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. Brain Res.17, 205–242 (1970). ArticleCASPubMed Google Scholar
Kleinfeld, D. & Deschênes, M. Neuronal basis for object location in the vibrissa scanning sensorimotor system. Neuron72, 455–468 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hutson, K.A. & Masterton, R.B. The sensory contribution of a single vibrissa's cortical barrel. J. Neurophysiol.56, 1196–1223 (1986). ArticleCASPubMed Google Scholar
Masino, S.A., Kwon, M.C., Dory, Y. & Frostig., R.D. Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull. Proc. Natl. Acad. Sci. USA90, 9998–10002 (1993). ArticleCASPubMedPubMed Central Google Scholar
Armstrong-James, M., Fox, K. & Das-Gupta, A. Flow of excitability within barrel cortex on striking a single vibrissa. J. Neurophysiol.68, 1345–1358 (1992). ArticleCASPubMed Google Scholar
Woolsey, T.A. et al. Neuronal units linked to microvascular modules in cerebral cortex: response elements for imaging the brain. Cereb. Cortex6, 647–660 (1996). ArticleCASPubMed Google Scholar
Cassot, F. et al. Branching patterns for arterioles and venules of the human cerebral cortex. Brain Res.1313, 62–78 (2010). ArticleCASPubMed Google Scholar
Villringer, A., Mehraein, S. & Einhäupl, K.M. Pathophysiological aspects of cerebral sinus venous thrombosis (SVT). J. Neuroradiol.21, 72–80 (1994). CASPubMed Google Scholar
Brown, W.R. & Thore, C.R. Cerebral microvascular pathology in aging and neurodegeneration. Neuropathol. Appl. Neurobiol.37, 56–74 (2011). ArticleCASPubMedPubMed Central Google Scholar
Zhang, S. & Murphy, T.H. Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biol.5, e119 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Troncoso, E. et al. Recovery of evoked potentials, metabolic activity and behavior in a mouse model of somatosensory cortex lesion: role of the neural cell adhesion molecule (NCAM). Cereb. Cortex14, 332–341 (2004). ArticleCASPubMed Google Scholar
Carmichael, S.T. Plasticity of cortical projections after stroke. Neuroscienist9, 64–75 (2003). Article Google Scholar
Mohajerani, M.H., Aminoltejari, K. & Murphy, T.H. Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc. Natl. Acad. Sci. USA108, E183–E191 (2011). ArticlePubMedPubMed Central Google Scholar
Rosidi, N.L. et al. Cortical microhemorrhages cause local inflammation but do not trigger widespread dendrite degeneration. PLoS ONE6, e26612 (2011). ArticleCASPubMedPubMed Central Google Scholar
Nishimura, N., Rosidi, N.L., Iadecola, C. & Schaffer, C.B. Limitations of collateral flow after occlusion of a single cortical penetrating arteriole. J. Cereb. Blood Flow Metab.30, 1914–1927 (2010). ArticlePubMedPubMed Central Google Scholar
Frostig, R.D., Lieke, E.E., Ts'o, D.Y. & Grinvald, A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. USA87, 6082–6086 (1990). ArticleCASPubMedPubMed Central Google Scholar
Kleinfeld, D. & Delaney, K.R. Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage sensitive dyes. J. Comp. Neurol.375, 89–108 (1996). ArticleCASPubMed Google Scholar
Tsai, P.S. & Kleinfeld, D. In vivo two-photon laser scanning microscopy with concurrent plasma-mediated ablation: principles and hardware realization. in Methods for In Vivo Optical Imaging 2nd edn. (ed. Frostig, R.D.) 59–115 (CRC Press, 2009).
Valmianski, I. et al. Automatic identification of fluorescently labeled brain cells for rapid functional imaging. J. Neurophysiol.104, 1803–1811 (2010). ArticlePubMedPubMed Central Google Scholar
Driscoll, J.D., Shih, A.Y., Drew, P.J., Cauwenberghs, G. & Kleinfeld, D. Two-photon imaging of blood flow in cortex. in Imaging in Neuroscience: A Laboratory Manual (eds. Helmchen, F., Konnerth, A. & Yuste, R.) 927–938 (Cold Spring Harbor Laboratory Press, New York, 2011).
Shih, A.Y. et al. Optically induced occlusion of single blood vessels in neocortex. in Imaging in Neuroscience: A Laboratory Manual (eds. Helmchen, F., Konnerth, A. & Yuste, R.) 939–948 (Cold Spring Harbor Laboratory Press, New York, 2011).
Nguyen, Q.-T., Dolnick, E.M., Driscoll, J. & Kleinfeld, D. MPScope 2.0: A computer system for two-photon laser scanning microscopy with concurrent plasma-mediated ablation and electrophysiology. in Methods for In Vivo Optical Imaging 2nd edn. (ed. Frostig, R.D.) 117–142 (CRC Press, 2009).
Nimmerjahn, A., Kirchhoff, F., Kerr, J.N. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat. Methods1, 31–37 (2004). ArticleCASPubMed Google Scholar
Mehta, S.B., Whitmer, D., Figueroa, R., Williams, B.A. & Kleinfeld, D. Active spatial perception in the vibrissa scanning sensorimotor system. PLoS Biol.5, 309–322 (2007). ArticleCAS Google Scholar
Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic Press, San Diego, 1986).