Lee, V.M.Y. & Trojanowski, J.Q. Neurodegenerative taupathies: human disease and transgenic mouse models. Neuron24, 507–510 (1999). CASPubMed Google Scholar
Lin, X., Cummings, C.J. & Zoghbi, H.Y. Expanding our understanding of polyglutamine diseases through mouse models. Neuron24, 499–502 (1999). CASPubMed Google Scholar
Dunnett, S.B. & Bjorklund, A. Prospects for new restorative and neuroprotective treatments in Parkinson's Disease. Nature399, A32–A39 (1999). CASPubMed Google Scholar
Yamamoto, A., Lucas, J.J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell101, 57–66 (2000). CASPubMed Google Scholar
Hardy, J. & Gwinn-Hardy, K. Genetic classification of primary neurodegenerative disease. Science282, 1075–1079 (1998). CASPubMed Google Scholar
Selkoe, D.J. Alzheimer's disease: genes, proteins and therapy. Physiol. Rev.81, 741–766 (2001). CASPubMed Google Scholar
Price, D.L., Sisodia, S.S. & Borchelt, D.R. Genetic neurodegenerative diseases: the human illness and transgenic models. Science282, 1079–1083 (1998). CASPubMed Google Scholar
Schilling, G. et al. Intranuclear inclusions and neuritic pathology in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum. Mol. Genet.8, 397–407 (1999). CASPubMed Google Scholar
Goedert, M., Spillantini, M.G. & Davies, S.W. Filamentous nerve cell inclusions in neurodegenerative diseases. Curr. Opin. Neurobiol.8, 619–632 (1998). CASPubMed Google Scholar
Zoghbi, H.Y. & Orr, H.T. Polyglutamine diseases: protein cleavage and aggregation. Curr. Opin. Neurobiol.9, 566–570 (1999). CASPubMed Google Scholar
Albert, M.S. & Drachman, D.A. Alzheimer's disease. What is it, how many people have it, and why do we need to know? Neurology55, 166–168 (2000). CASPubMed Google Scholar
Mesulam, M.M. Neuroplasticity failure in Alzheimer's disease: bridging the gape between plaques and tangles. Neuron24, 521–529 (1999). CASPubMed Google Scholar
Price, D.L. & Sisodia, S.S. Mutant genes in familial Alzheimer's disease and transgenic models. Annu. Rev. Neurosci.21, 479–505 (1998). CASPubMed Google Scholar
Beach, T.G. et al. The cholinergic deficit coincides with Aβ deposition at the earliest histopathologic stages of Alzheimer disease. J. Neuropathol. Exp. Neurol.59, 308–313 (2000). CASPubMed Google Scholar
Serpell, L.C., Blake, C.C.F. & Fraser, P.E. Molecular structure of a fibrillar Alzheimer's Aβ fragment. Biochemistry39, 13269–13275 (2000). CASPubMed Google Scholar
Lansbury, P.T. Jr. Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc. Natl. Acad. Sci. USA96, 3342–3344 (1999). CASPubMedPubMed Central Google Scholar
Tanzi, R.E. New frontiers in Alzheimer's disease genetics. Neuron32, 181–184 (2001). CASPubMed Google Scholar
Selkoe, D.J. Clearing the brain's amyloid cobwebs. Neuron32, 177–180 (2001). CASPubMed Google Scholar
Sinha, S. et al. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature402, 537–540 (1999). CASPubMed Google Scholar
Hussain, I. et al. Identification of a novel aspartic protease (Asp 2) as β-secretase. Mol. Cell. Neurosci.14, 419–427 (1999). CASPubMed Google Scholar
Lin, X. et al. Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proc. Natl. Acad. Sci. USA97, 1456–1460 (2000). CASPubMedPubMed Central Google Scholar
Yan, R. et al. Membrane-anchored aspartyl protease with Alzheimer's disease β-secretase activity. Nature402, 533–537 (1999). CASPubMed Google Scholar
Vassar, R. et al. β-secretase cleavage of Alzheimer's amyloid precusor protein by the transmembrane aspartic protease BACE. Science286, 735–741 (1999). CASPubMed Google Scholar
Wong, P.C., Price, D.L. & Cai, H. The brain's susceptibility to amyloid plaques. Science293, 1434–1435 (2001). CASPubMed Google Scholar
Farzan, M., Schnitzler, C.E., Vasilieva, N., Leung, D. & Choe, H. BACE2, a β-secretase homolog, cleaves at the β site and within the amyloid-β region of the amyloid-β precursor protein. Proc. Natl. Acad. Sci. USA97, 9712–9717 (2000). CASPubMedPubMed Central Google Scholar
Nilsberth, C. et al. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nat. Neurosci.4, 887–893 (2001). CASPubMed Google Scholar
Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature375, 754–760 (1995). CASPubMed Google Scholar
Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science269, 973–977 (1995). CASPubMed Google Scholar
Rogaev, E.I. et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature376, 775–778 (1995). CASPubMed Google Scholar
Thinakaran, G. et al. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron17, 181–190 (1996). CASPubMed Google Scholar
Sisodia, S.S. & George-Hyslop, P.H. gamma-secretase, Notch, Aβ and Alzheimer's disease: where do the presenilins fit in? Nat. Rev. Neurosci.3, 281–290 (2002). CASPubMed Google Scholar
Esler, W.P. & Wolfe, M.S. A portrait of Alzheimer secretases—new features and familiar faces. Science293, 1449–1454 (2001). CASPubMed Google Scholar
Vassar, R. & Citron, M. Aβ-generating enzymes: recent advances in β- and γ-secretase research. Neuron27, 419–422 (2000). CASPubMed Google Scholar
De Strooper, B. et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature391, 387–390 (1998). CASPubMed Google Scholar
Wolfe, M.S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and secretase activity. Nature398, 513–517 (1999). CASPubMed Google Scholar
Kopan, R. & Goate, A. Aph-2/Nicastrin: an essential component of gamma-secretase and regulator of notch signaling and presenilin localization. Neuron33, 321–324 (2002). CASPubMed Google Scholar
Calhoun, M.E. et al. Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc. Natl. Acad. Sci. USA96, 14088–14093 (1999). CASPubMedPubMed Central Google Scholar
Chen, G. et al. A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer's disease. Nature408, 975–979 (2000). CASPubMed Google Scholar
Mucke, L. et al. High-level neuronal expression of Aβ1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci.20, 4050–4058 (2000). CASPubMedPubMed Central Google Scholar
Hsia, A.Y. et al. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc. Natl. Acad. Sci. USA96, 3228–3233 (1999). CASPubMedPubMed Central Google Scholar
Lewis, J. et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science293, 1487–1491 (2001). CASPubMed Google Scholar
Götz, J., Chen, F., Barmettler, R. & Nitsch, R.M. Tau filament formation in transgenic mice expressing P301L tau. J. Biol. Chem.276, 529–534 (2001). PubMed Google Scholar
Borchelt, D.R. et al. Accelerated amyloid deposition in the brains of transgenic mice co-expressing mutant presenilin 1 and amyloid precursor proteins. Neuron19, 939–945 (1997). CASPubMed Google Scholar
Zheng, H. et al. β-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell81, 525–531 (1995). CASPubMed Google Scholar
Heber, S. et al. Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J. Neurosci.20, 7951–7963 (2000). CASPubMedPubMed Central Google Scholar
Struhl, G. & Greenwald, I. Presenilin is required for activity and nuclear access of notch in drosophila. Nature398, 522–525 (1999). CASPubMed Google Scholar
Wong, P.C. et al. Presenilin 1 is required for Notch1 and Dll1 expression in the paraxial mesoderm. Nature387, 288–292 (1997). ArticleCASPubMed Google Scholar
Yu, H. et al. APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron31, 713–726 (2001). CASPubMed Google Scholar
Feng, R. et al. Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron32, 911–926 (2001). CASPubMed Google Scholar
Cai, H. et al. BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat. Neurosci.4, 233–234 (2001). CASPubMed Google Scholar
Luo, Y. et al. Mice deficient in BACE1, the Alzheimer's β-secretase, have normal phenotype and abolished β-amyloid generation. Nature4, 231–232 (2001). CAS Google Scholar
Roberds, S.L. et al. BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain: implication for Alzheimer's disease therapeutics. Hum. Mol. Genet.10, 1317–1324 (2001). CASPubMed Google Scholar
Bodendorf, U., Fischer, F., Bodian, D., Multhaup, G. & Paganetti, P. A splice variant of β-secretase deficient in the amyloidogenic processing of the amyloid precursor protein. J. Biol. Chem.276, 12019–12023 (2001). CASPubMed Google Scholar
Li, Y.M. et al. Photoactivated γ-secretase inhibitors directed to the active site convalently label presenilin 1. Nature405, 689–693 (2000). CASPubMed Google Scholar
Huppert, S.S. et al. Embryonic lethality in mice homozygous for a processing-deficient allele of Notch 1. Nature405, 966–970 (2000). CASPubMed Google Scholar
Petit, A. et al. New protease inhibitors prevent γ-secretase-mediated production of Aβ40/42 without affecting Notch clevage. Nat. Cell Biol.3, 507–511 (2001). CASPubMed Google Scholar
Hadland, B.K. et al. γ-secretase inhibitors repress thymocyte development. Proc. Natl. Acad. Sci. USA98, 7487–7491 (2001). CASPubMedPubMed Central Google Scholar
Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer's disease. Nat. Med.6, 916–919 (2000). CASPubMed Google Scholar
Schenk, D. et al. Immunization with amyloid attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature400, 173–177 (1999). CASPubMed Google Scholar
DeMattos, R.B. et al. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA98, 8850–8855 (2001). CASPubMedPubMed Central Google Scholar
Janus, C. et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature408, 979–982 (2000). CASPubMed Google Scholar
Morgan, D. et al. A β peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature408, 982–985 (2000). CASPubMed Google Scholar
Ince, P.G. in Amyotrophic Lateral Sclerosis (eds. Brown, R. H. Jr., Meininger, V. & Swash, M.) 83–112 (Martin Dunitz, London, 2000). Google Scholar
Martin, L.J. Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J. Neuropathol. Exp. Neurol.58, 459–471 (1999). CASPubMed Google Scholar
Andersen, P.M., Morita, M. & Brown, R.H. Jr. in Amyotrophic Lateral Sclerosis (eds. Brown, R. H. Jr., Meininger, V. & Swash, M.) 223–250 (Martin Dunitz, London, 2000). Google Scholar
Cleveland, D.W. & Rothstein, J.D. From Charcot to Lou Gehrig: deciphering selective motor neurons death in ALS. Nature2, 806–819 (2001). CAS Google Scholar
Hadano, S. et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat. Genet.29, 166–173 (2001). CASPubMed Google Scholar
Yang, Y. et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat. Genet.29, 160–165 (2001). CASPubMed Google Scholar
Gurney, M.E. et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science264, 1772–1775 (1994). CASPubMed Google Scholar
Wong, P.C. et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron14, 1105–1116 (1995). CASPubMed Google Scholar
Bruijn, L.I. et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron18, 327–338 (1997). CASPubMed Google Scholar
Jackson, M. & Rothstein, J.D. in Amyotrophic Lateral Sclerosis (eds. Brown, R. H. Jr., Meininger, V. & Swash, M.) 263–278 (Martin Dunitz, London, 2000). Google Scholar
Shaw, P.J. in Amyotrophic Lateral Sclerosis (eds. Brown, R. H. Jr., Meininger, V. & Swash, M.) 113–144 (Martin Dunitz, London, 2000). Google Scholar
Williamson, T.L. & Cleveland, D.W. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat. Neurosci.2, 50–56 (1999). CASPubMed Google Scholar
Julien, J.-P. Amyotrophic lateral sclerosis: unfolding the toxicity of the misfolded. Cell104, 581–591 (2001). CASPubMed Google Scholar
Pasinelli, P., Borchelt, D.R., Houseweart, M.K., Cleveland, D.W. & Brown, R.H. Caspase-1 is activated in neural cells and tissue with amyotrophic lateral sclerosis-associated mutations in copper-zinc superoxide dismutase. Neurobiology95, 15763–15768 (1998). CAS Google Scholar
Couillard-Després, S. et al. Protective effect of neurofilament NF-H overexpression in motor neuron disease induced by mutant superoxide dismutase. Proc. Natl. Acad. Sci. USA95, 9626–9630 (1998). PubMedPubMed Central Google Scholar
Klivenyi, P. et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat. Med.5, 347–350 (1999). CASPubMed Google Scholar
Estévez, A.G. et al. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science286, 2498–2500 (1999). PubMed Google Scholar
Wong, P.C. et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA97, 2886–2891 (2000). CASPubMedPubMed Central Google Scholar
Subramaniam, J.R. et al. Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading. Nat. Neurosci.5, 301–307 (2002). CASPubMed Google Scholar
Johnston, J.A., Dalton, M.J., Gurney, M.E. & Kopito, R.R. Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA97, 12571–12576 (2000). CASPubMedPubMed Central Google Scholar
Bruijn, L.I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science281, 1851–1854 (1998). CASPubMed Google Scholar
Beaulieu, J.M., Jacomy, H. & Julien, J.P. Formation of intermediate filament protein aggregates with disparate effects in two transgenic mouse models lacking the neurofilament light subunit. J. Neurosci.20, 5321–5328 (2000). CASPubMedPubMed Central Google Scholar
Eyer, J., Cleveland, D.W., Wong, P.C. & Peterson, A.C. Pathogenesis of two axonopathies does not require axonal neurofilaments. Nature391, 584–587 (1998). CASPubMed Google Scholar
Williamson, T.L. et al. Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. Proc. Natl. Acad. Sci. USA95, 9631–9636 (1998). CASPubMedPubMed Central Google Scholar
Kong, J. & Xu, Z. Overexpression of neurofilament subunit NF-L and NF-H extends survival of a mouse model for amyotrophic lateral sclerosis. Neurosci. Lett.281, 72–74 (2000). CASPubMed Google Scholar
Crawford, T. & Pardo, C.A. The neurobiology of childhood spinal muscular atrophy. Neurobiol. Dis.3, 97–110 (1996). CASPubMed Google Scholar
Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell80, 155–165 (1995). CASPubMed Google Scholar
Roy, N. et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell80, 167–178 (1995). CASPubMed Google Scholar
Fischer, U., Liu, Q. & Dreyfuss, G. The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell90, 1023–1029 (1997). CASPubMed Google Scholar
Pagliardini, S. et al. Subcellular localization and axonal transport of the survival motor neuron (SMN) protein in the developing rat spinal cord. Hum. Mol. Genet.9, 47–56 (2000). CASPubMed Google Scholar
Jablonka, S., Schrank, B., Kralewski, M., Rossoll, W. & Sendtner, M. Reduced survival motor neuron (Smn) gene dose in mice leads to motor neuron degeneration: an animal model for spinal muscular atrophy type III. Hum. Mol. Genet.9, 341–346 (2000). CASPubMed Google Scholar
Hsieh-Li, H.M. et al. A mouse model for spinal muscular atrophy. Nat. Genet.24, 66–70 (2000). CASPubMed Google Scholar
Monani, U.R. et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn−/− mice and results in a mouse with spinal muscular atrophy. Hum. Mol. Genet.9, 333–339 (2000). CASPubMed Google Scholar
Chang, J.-G. et al. Treatment of spinal muscular atrphy by sodium butyrate. Proc. Natl. Acad. Sci. USA98, 9808–9813 (2001). CASPubMedPubMed Central Google Scholar