Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition (original) (raw)

References

  1. LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).
    Article CAS Google Scholar
  2. Maren, S. Neurobiology of pavlovian fear conditioning. Annu. Rev. Neurosci. 24, 897–931 (2001).
    Article CAS Google Scholar
  3. Bliss, T.V.P. & Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).
    Article CAS Google Scholar
  4. Blair, H.T., Schafe, G.E., Bauer, E.P., Rodrigues, S.M. & LeDoux, J.E. Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem. 8, 229–242 (2001).
    Article CAS Google Scholar
  5. Collins, D.R. & Paré, D. Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS+ and CS−. Learn. Mem. 7, 97–103 (2000).
    Article CAS Google Scholar
  6. Inglis, F.M. & Moghaddam, B. Dopaminergic innervation of the amygdala is highly responsive to stress. J. Neurochem. 72, 1088–1094 (1999).
    Article CAS Google Scholar
  7. Guarracci, F.A., Frohardt, F.J. & Kapp, B.S. Amygdaloid D1 dopamine receptor involvement in Pavlovian fear conditioning. Brain Res. 82, 28–40 (1999).
    Article Google Scholar
  8. Guarracci, F.A., Frohardt, F.J., Falls, W.A. & Kapp, B.S. The effects of intraamygdaloid infusions of a D2 dopamine receptor antagonist on Pavlovian fear conditioning. Behav. Neurosci. 114, 262–272 (2000).
    Article Google Scholar
  9. Greba, Q. & Kokkinidis, L. Peripheral and intraamygdalar administration of the dopamine D1 receptor antagonist SCH23390 blocks fear-potentiated startle but not shock reactivity or the shock sensitization of acoustic startle. Behav. Neurosci. 114, 262–272 (2001).
    Article Google Scholar
  10. Greba, Q., Gifkins, A. & Kokkinidis, L. Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle. Brain Res. 899, 218–226 (2001).
    Article CAS Google Scholar
  11. Rosenkranz, J.A. & Grace, A.A. Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning. Nature 417, 282–287 (2002).
    Article CAS Google Scholar
  12. Brinley-Reed, M. & McDonald, A.J. Evidence that dopaminergic axons provide a dense innervation of specific neuronal subpopulations in the rat basolateral amygdala. Brain Res. 850, 127–135 (1999).
    Article CAS Google Scholar
  13. Sugita, S., Tanaka, E. & North, R.A. Membrane properties and synaptic potentials of three types of neurones in the rat lateral amygdala. J. Physiol. (Lond.) 460, 705–718 (1993).
    Article CAS Google Scholar
  14. Li, X.F., Armony, J.L. & LeDoux, J.E. GABAA and GABAB receptors differentially regulate synaptic transmission in the auditory thalamo-amygdala pathway: An in vivo microiontophoretic study and a model. Synapse 24, 115–124 (1996).
    Article CAS Google Scholar
  15. Lang, E.J. & Paré, D. Similar inhibitory processes dominate the responses of cat lateral amygdaloid projection neurons to their various afferents. J. Neurophysiol. 77, 341–352 (1997).
    Article CAS Google Scholar
  16. Weisskopf, M.G., Bauer, E.P. & LeDoux, J.E. L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J. Neurosci. 19, 10512–10519 (1999).
    Article CAS Google Scholar
  17. Rogan, M.T., Staubli, U.V. & LeDoux, J.E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607 (1997).
    Article CAS Google Scholar
  18. McKernan, M.G. & Shinnick-Gallagher, P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390, 607–611 (1997).
    Article CAS Google Scholar
  19. Szinyei, C., Heinbockel, T., Montagne, J. & Pape, H.C. Putative cortical and thalamic inputs elicit convergent excitation in a population of GABAergic interneurons of the lateral amygdala. J. Neurosci. 20, 8909–8915 (2000).
    Article CAS Google Scholar
  20. Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 (2001).
    Article CAS Google Scholar
  21. Rainnie, D.G., Asprodini, E.K. & Shinnick-Gallagher, P. Excitatory transmission in the basolateral amygdala. J. Neurophysiol. 66, 986–998 (1991).
    Article CAS Google Scholar
  22. Sjöström, P.J., Turrigiano, G.G. & Nelson, S.B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001).
    Article Google Scholar
  23. Stuart, G.J. & Häusser, M. Dendritic coincidence detection of EPSPs and action potentials. Nature Neurosci. 4, 63–71 (2001).
    Article CAS Google Scholar
  24. Rosenkranz, J.A. & Grace, A.A. Modulation of basolateral amygdala neuronal firing and afferent drive by dopamine receptor activation in vivo. J. Neurosci. 19, 11027–11039 (1999).
    Article CAS Google Scholar
  25. Washburn, M.S. & Moises, H.C. Electrophysiological and morphological properties of rat basolateral amygdaloid neurons in vitro. J. Neurosci. 12, 4066–4079 (1992).
    Article CAS Google Scholar
  26. Rainnie, D.G., Asprodini, E.K. & Shinnick-Gallagher, P. Intracellular recordings from morphologically identified neurons of the basolateral amygdala. J. Neurophysiol. 69, 1350–1362 (1993).
    Article CAS Google Scholar
  27. McDonald, A.J. Neurons of the lateral and basolateral amygdaloid nuclei: a Golgi study in the rat. J. Comp. Neurol. 212, 293–312 (1982).
    Article CAS Google Scholar
  28. Lang, E.J. & Paré, D. Synaptic responsiveness of interneurons of the cat lateral amygdaloid nucleus. Neuroscience 83, 877–889 (1998).
    Article CAS Google Scholar
  29. Paré, D. & Gaudreau, H. Projection cells and interneurons of the lateral and basolateral amygdala: distinct firing patterns and differential relation to theta and delta rhythms in conscious cats. J. Neurosci. 16, 3334–3350 (1996).
    Article Google Scholar
  30. Paré, D. & Collins, D.R. Neuronal correlates of fear in the lateral amygdala: multiple extracellular recordings in conscious cats. J. Neurosci. 20, 2701–2710 (2000).
    Article Google Scholar
  31. Davis, M. The role of the amygdala in conditioned and unconditioned fear and anxiety. in The Amygdala (ed. Aggleton, J.P.) 231–288 (Oxford Univ. Press, Oxford, UK, 2000).
    Google Scholar
  32. Seamans, J.K., Gorelova, N., Durstewitz, D. & Yang, C.R. Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J. Neurosci. 21, 3628–3638 (2001).
    Article CAS Google Scholar
  33. McDonald, A.J. & Mascagni, F. Colocalization of calcium-binding proteins and gamma-aminobutyric acid in neurons of the rat basolateral amygdala. Neuroscience 105, 681–693 (2001).
    Article CAS Google Scholar
  34. Kemppainen, S. & Pitkänen, A. Distribution of parvalbumin, calretinin, and calbindin-D(28k) immunoreactivity in the rat amygdaloid complex and colocalization with gamma-aminobutyric acid. J. Comp. Neurol. 426, 441–467 (2000).
    Article CAS Google Scholar
  35. Wigström, H. & Gustafsson, B. Facilitated induction of hippocampal long-lasting potentiation during blockade of inhibition. Nature 301, 603–604 (1983).
    Article Google Scholar
  36. Davies, C.H., Starkey, S.J., Pozza, M.F. & Collingridge, G.L. GABAB autoreceptors regulate the induction of LTP. Nature 349, 609–611 (1991).
    Article CAS Google Scholar
  37. Yamada, J., Saitow, F., Satake, S., Kiyohara, T. & Konishi, S. GABAB receptor-mediated presynaptic inhibition of glutamatergic and GABAergic transmission in the basolateral amygdala. Neuropharmacology 38, 1743–1753 (1999).
    Article CAS Google Scholar
  38. Bauer, E.P., Schafe, G.E. & LeDoux, J.E. NMDA receptors and voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J. Neurosci. 22, 5239–5249 (2002).
    Article CAS Google Scholar
  39. Rosenkranz, J.A. & Grace, A.A. Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. J. Neurosci. 21, 4090–4103 (2001).
    Article CAS Google Scholar
  40. Nader, K. & LeDoux, J.E. Inhibition of the mesoamygdala dopaminergic pathway impairs the retrieval of conditioned fear associations. Behav. Neurosci. 113, 891–901 (1999).
    Article CAS Google Scholar
  41. El-Ghundi, M., O'Dowd, B.F. & George, S.R. Prolonged fear responses in mice lacking dopamine D1 receptor. Brain Res. 892, 86–93 (2001).
    Article CAS Google Scholar
  42. Heidbreder, C.A. et al. Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience 100, 749–768 (2000).
    Article CAS Google Scholar
  43. Tessitore, A. et al. Dopamine modulates the response of the human amygdala: a study in Parkinson's disease. J. Neurosci. 22, 9099–9103 (2002).
    Article CAS Google Scholar
  44. Klimek, V., Schenck, J.E., Han, H., Stockmeier, C.A. & Ordway, G.A. Dopaminergic abnormalities in amygdaloid nuclei in major depression: a postmortem study. Biol. Psychiatry 52, 740–748 (2002).
    Article CAS Google Scholar
  45. Anderson, W.W. & Collingridge, G.L. The LTP program: A data acquisition program for on-line analysis of long-term potentiation and other synaptic events. J. Neurosci. Methods 108, 71–83 (2001).
    Article CAS Google Scholar

Download references