Activity-induced targeting of profilin and stabilization of dendritic spine morphology (original) (raw)

References

  1. Crick, F. Do dendritic spines twitch? Trends Neurosci. 5, 44–46 (1982).
    Google Scholar
  2. Matus, A., Ackermann, M., Pehling, G., Byers, H.R. & Fujiwara, K. High actin concentrations in brain dendritic spines and postsynaptic densities. Proc. Natl. Acad. Sci. USA 79, 7590–7594 (1982).
    CAS PubMed Google Scholar
  3. Harris, K.M. & Kater, S.B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci. 17, 341–371 (1994).
    CAS PubMed Google Scholar
  4. Halpain, S. Actin and the agile spine: how and why do dendritic spines dance? Trends Neurosci. 23, 141–146 (2000).
    CAS PubMed Google Scholar
  5. Matus, A. Actin-based plasticity in dendritic spines. Science 290, 754–758 (2000).
    CAS PubMed Google Scholar
  6. Geinisman, Y., Berry, R.W., Disterhoft, J.F., Power, J.M. & Van der Zee, E.A. Associative learning elicits the formation of multiple-synapse boutons. J. Neurosci. 21, 5568–5573 (2001).
    CAS PubMed PubMed Central Google Scholar
  7. Lendvai, B., Stern, E.A., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881 (2000).
    CAS PubMed Google Scholar
  8. Knott, G.W., Quairiaux, C., Genoud, C. & Welker, E. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34, 265–273 (2002).
    CAS PubMed Google Scholar
  9. Trachtenberg, J.T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).
    CAS PubMed Google Scholar
  10. Ottersen, O.P. & Helm, P.J. Neurobiology: How hardwired is the brain? Nature 420, 751–752 (2002).
    CAS PubMed Google Scholar
  11. Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).
    CAS PubMed Google Scholar
  12. Dunaevsky, A., Tashiro, A., Majewska, A., Mason, C. & Yuste, R. Developmental regulation of spine motility in the mammalian central nervous system. Proc. Natl. Acad. Sci. USA 96, 13438–13443 (1999).
    CAS PubMed Google Scholar
  13. Kim, C.H. & Lisman, J.E. A role of actin filaments in synaptic transmission and long-term potentiation. J. Neurosci. 19, 4314–4324 (1999).
    CAS PubMed PubMed Central Google Scholar
  14. Krucker, T., Siggins, G.R. & Halpain, S. Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc. Natl. Acad. Sci. USA 97, 6856–6861 (2000).
    CAS PubMed Google Scholar
  15. Carlsson, L., Nystrom, L.E., Sundkvist, I., Markey, F. & Lindberg, U. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J. Mol. Biol. 115, 465–483 (1977).
    CAS PubMed Google Scholar
  16. Buss, F., Temm-Grove, C., Henning, S. & Jockusch, B.M. Distribution of profilin in fibroblasts correlates with the presence of highly dynamic actin filaments. Cell Motil. Cytoskeleton 22, 51–61 (1992).
    CAS PubMed Google Scholar
  17. Rothkegel, M. et al. Plant and animal profilins are functionally equivalent and stabilize microfilaments in living animal cells. J. Cell. Sci. 109, 83–90 (1996).
    CAS PubMed Google Scholar
  18. Witke, W., Sutherland, J.D., Sharpe, A., Arai, M. & Kwiatkowski, D.J. Profilin I is essential for cell survival and cell division in early mouse development. Proc. Natl. Acad. Sci. USA 98, 3832–3836 (2001).
    CAS PubMed Google Scholar
  19. Honore, B., Madsen, P., Andersen, A.H. & Leffers, H. Cloning and expression of a novel human profilin variant, profilin II. FEBS Lett. 330, 151–155 (1993).
    CAS PubMed Google Scholar
  20. Artola, A. & Singer, W. Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci. 16, 480–487 (1993).
    CAS PubMed Google Scholar
  21. Yang, S.N., Tang, Y.G. & Zucker, R.S. Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J. Neurophysiol. 81, 781–787 (1999).
    CAS PubMed Google Scholar
  22. Bliss, T.V. & Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).
    CAS PubMed Google Scholar
  23. Bear, M.F. & Malenka, R.C. Synaptic plasticity: LTP and LTD. Curr. Opin. Neurobiol. 4, 389–399 (1994).
    CAS PubMed Google Scholar
  24. Martin, S.J., Grimwood, P.D. & Morris, R.G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).
    CAS PubMed Google Scholar
  25. Dudek, S.M. & Bear, M.F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci. USA 89, 4363–4367 (1992).
    CAS PubMed Google Scholar
  26. Carroll, R.C., Lissin, D.V., von Zastrow, M., Nicoll, R.A. & Malenka, R.C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci. 2, 454–460 (1999).
    CAS PubMed Google Scholar
  27. Reinhard, M. et al. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. Embo J. 14, 1583–1589 (1995).
    CAS PubMed PubMed Central Google Scholar
  28. Gertler, F.B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87, 227–239 (1996).
    CAS PubMed Google Scholar
  29. Kang, F., Laine, R.O., Bubb, M.R., Southwick, F.S. & Purich, D.L. Profilin interacts with the Gly-Pro-Pro-Pro-Pro-Pro sequences of vasodilator-stimulated phosphoprotein (VASP): implications for actin- based Listeria motility. Biochemistry 36, 8384–8392 (1997).
    CAS PubMed Google Scholar
  30. Liao, D., Zhang, X., O'Brien, R., Ehlers, M.D. & Huganir, R.L. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat. Neurosci. 2, 37–43 (1999).
    CAS PubMed Google Scholar
  31. Rumpel, S., Hatt, H. & Gottmann, K. Silent synapses in the developing rat visual cortex: evidence for postsynaptic expression of synaptic plasticity. J. Neurosci. 18, 8863–8874 (1998).
    CAS PubMed PubMed Central Google Scholar
  32. Petralia, R.S. et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat. Neurosci. 2, 31–36 (1999).
    CAS PubMed Google Scholar
  33. Grutzendler, J., Kasthuri, N. & Gan, W.B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).
    CAS PubMed Google Scholar
  34. Roelandse, M., Welman, A., Wagner, U., Hagmann, J. & Matus, A. Focal motility determines the geometry of dendritic spines. Neuroscience (in the press).
  35. Finkel, T., Theriot, J.A., Dise, K.R., Tomaselli, G.F. & Goldschmidt-Clermont, P.J. Dynamic actin structures stabilized by profilin. Proc. Natl. Acad. Sci. USA 91, 1510–1514 (1994).
    CAS PubMed Google Scholar
  36. Hajkova, L., Nyman, T., Lindberg, U. & Karlsson, R. Effects of cross-linked profilin:beta/gamma-actin on the dynamics of the microfilament system in cultured cells. Exp. Cell. Res. 256, 112–121 (2000).
    CAS PubMed Google Scholar
  37. Dickinson, R.B. & Purich, D.L. Clamped-filament elongation model for actin-based motors. Biophys. J. 82, 605–617 (2002).
    CAS PubMed PubMed Central Google Scholar
  38. Suetsugu, S., Miki, H. & Takenawa, T. The essential role of profilin in the assembly of actin for microspike formation. Embo J. 17, 6516–6526 (1998).
    CAS PubMed PubMed Central Google Scholar
  39. Christofi, G., Nowicky, A.V., Bolsover, S.R. & Bindman, L.J. The postsynaptic induction of nonassociative long-term depression of excitatory synaptic transmission in rat hippocampal slices. J. Neurophysiol. 69, 219–229 (1993).
    CAS PubMed Google Scholar
  40. Mulkey, R.M. & Malenka, R.C. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9, 967–975 (1992).
    CAS PubMed Google Scholar
  41. Artola, A., Hensch, T. & Singer, W. Calcium-induced long-term depression in the visual cortex of the rat in vitro. J. Neurophysiol. 76, 984–994 (1996).
    CAS PubMed Google Scholar
  42. Star, E.N., Kwiatkowski, D.J. & Murthy, V.N. Rapid turnover of actin in dendritic spines and its regulation by activity. Nat. Neurosci. 5, 239–246 (2002).
    CAS PubMed Google Scholar
  43. Fukazawa, Y. et al. Hippocampal LTP is accompanied by enhanced f-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38, 447–460 (2003).
    CAS PubMed Google Scholar
  44. Soderling, T.R. & Derkach, V.A. Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 23, 75–80 (2000).
    CAS PubMed Google Scholar
  45. Isaac, J. Protein Phosphatase 1 and LTD. Synapses are the architects of depression. Neuron 32, 963–966 (2001).
    CAS PubMed Google Scholar
  46. Frey, U., Krug, M., Reymann, K.G. & Matthies, H. Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res. 452, 57–65 (1988).
    CAS PubMed Google Scholar
  47. Nguyen, P.V., Abel, T. & Kandel, E.R. Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265, 1104–1107 (1994).
    CAS PubMed Google Scholar
  48. McGaugh, J.L. Time-dependent processes in memory storage. Science 153, 1351–1358 (1966).
    CAS PubMed Google Scholar
  49. Frey, U. & Morris, R.G. Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci. 21, 181–188 (1998).
    CAS PubMed Google Scholar
  50. Martin, K.C. & Kosik, K.S. Synaptic tagging—who's it? Nat. Rev. Neurosci. 3, 813–820 (2002).
    CAS PubMed Google Scholar

Download references