Overexpression of type-1 adenylyl cyclase in mouse forebrain enhances recognition memory and LTP (original) (raw)

References

  1. Dudai, Y. Molecular bases of long-term memories: a question of persistence. Curr. Opin. Neurobiol. 12, 211–216 (2002).
    Article CAS PubMed Google Scholar
  2. Matynia, A., Kushner, S.A. & Silva, A.J. Genetic approaches to molecular and cellular cognition: a focus on LTP and learning and memory. Annu. Rev. Genet. 36, 687–720 (2002).
    Article CAS PubMed Google Scholar
  3. Tully, T., Bourtchouladze, R., Scott, R. & Tallman, J. Targeting the CREB pathway for memory enhancers. Nat. Rev. Drug. Discov. 2, 267–277 (2003).
    Article CAS PubMed Google Scholar
  4. Wang, H. & Storm, D.R. Calmodulin-regulated adenylyl cyclases: cross-talk and plasticity in the central nervous system. Mol. Pharmacol. 63, 463–468 (2003).
    Article PubMed Google Scholar
  5. Weeber, E.J. & Sweatt, J.D. Molecular neurobiology of human cognition. Neuron 33, 845–848 (2002).
    Article CAS PubMed Google Scholar
  6. Waddell, S., Armstrong, J.D., Kitamoto, T., Kaiser, K. & Quinn, W.G. The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell 103, 805–813 (2000).
    Article CAS PubMed Google Scholar
  7. Chen, C.N., Denome, S. & Davis, R.L. Molecular analysis of cDNA clones and the corresponding genomic coding sequences of the Drosophila dunce+ gene, the structural gene for cAMP phosphodiesterase. Proc. Natl. Acad. Sci. USA 83, 9313–9317 (1986).
    Article CAS PubMed PubMed Central Google Scholar
  8. Livingstone, M.S., Sziber, P.P. & Quinn, W.G. Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell 37, 205–215 (1984).
    Article CAS PubMed Google Scholar
  9. Skoulakis, E.M., Kalderon, D. & Davis, R.L. Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron 11, 197–208 (1993).
    Article CAS PubMed Google Scholar
  10. Yin, J.C. et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49–58 (1994).
    Article CAS PubMed Google Scholar
  11. Yin, J.C., Del Vecchio, M., Zhou, H. & Tully, T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107–115 (1995).
    Article CAS PubMed Google Scholar
  12. Bartsch, D., Casadio, A., Karl, K.A., Serodio, P. & Kandel, E.R. CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell 95, 211–223 (1998).
    Article CAS PubMed Google Scholar
  13. Castellucci, V.F., Nairn, A., Greengard, P., Schwartz, J.H. & Kandel, E.R. Inhibitor of adenosine 3':5′-monophosphate-dependent protein kinase blocks presynaptic facilitation in Aplysia. J. Neurosci. 2, 1673–1681 (1982).
    Article CAS PubMed PubMed Central Google Scholar
  14. Dash, P.K., Hochner, B. & Kandel, E.R. Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345, 718–721 (1990).
    Article CAS PubMed Google Scholar
  15. Gerlai, R. Hippocampal LTP and memory in mouse strains: is there evidence for a causal relationship? Hippocampus 12, 657–666 (2002).
    Article PubMed Google Scholar
  16. Lisman, J.E. & McIntyre, C.C. Synaptic plasticity: a molecular memory switch. Curr. Biol. 11, R788–791 (2001).
    Article CAS PubMed Google Scholar
  17. Martin, S.J. & Morris, R.G. New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12, 609–636 (2002).
    Article CAS PubMed Google Scholar
  18. Abel, T. et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626 (1997).
    Article CAS PubMed Google Scholar
  19. Blitzer, R.D., Wong, T., Nouranifar, R., Iyengar, R. & Landau, E.M. Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron 15, 1403–1414 (1995).
    Article CAS PubMed Google Scholar
  20. Frey, U., Huang, Y.Y. & Kandel, E.R. Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260, 1661–1664 (1993).
    Article CAS PubMed Google Scholar
  21. Wong, S.T. et al. Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron 23, 787–798 (1999).
    Article CAS PubMed Google Scholar
  22. Wu, Z.L. et al. Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc. Natl. Acad. Sci. USA 92, 220–224 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  23. Salin, P.A., Malenka, R.C. & Nicoll, R.A. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16, 797–803 (1996).
    Article CAS PubMed Google Scholar
  24. Villacres, E.C., Wong, S.T., Chavkin, C. & Storm, D.R. Type I adenylyl cyclase mutant mice have impaired mossy fiber long-term potentiation. J. Neurosci. 18, 3186–3194 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  25. Huang, Y.Y. et al. A genetic test of the effects of mutations in PKA on mossy fiber LTP and its relation to spatial and contextual learning. Cell 83, 1211–1222 (1995).
    Article CAS PubMed Google Scholar
  26. Nguyen, P.V. & Kandel, E.R. A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J. Neurosci. 16, 3189–3198 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  27. Bramham, C.R., Bacher-Svendsen, K. & Sarvey, J.M. LTP in the lateral perforant path is beta-adrenergic receptor-dependent. Neuroreport 8, 719–724 (1997).
    Article CAS PubMed Google Scholar
  28. Storm, D.R., Hansel, C., Hacker, B., Parent, A. & Linden, D.J. Impaired cerebellar long-term potentiation in type I adenylyl cyclase mutant mice. Neuron 20, 1199–1210 (1998).
    Article CAS PubMed Google Scholar
  29. Pineda, V.V. et al. Removal of Giα1 constraints on adenylyl cyclase in the hippocampus enhances LTP and impairs memory formation. Neuron 41, 153–163 (2004).
    Article CAS PubMed Google Scholar
  30. Connolly, J.B. et al. Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274, 2104–2107 (1996).
    Article CAS PubMed Google Scholar
  31. Barad, M., Bourtchouladze, R., Winder, D.G., Golan, H. & Kandel, E. Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory. Proc. Natl. Acad. Sci. USA 95, 15020–15025 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  32. Bourtchouladze, R. et al. A mouse model of Rubinstein-Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc. Natl. Acad. Sci. USA 100, 10518–10522 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  33. Xia, Z.G., Refsdal, C.D., Merchant, K.M., Dorsa, D.M. & Storm, D.R. Distribution of mRNA for the calmodulin-sensitive adenylate cyclase in rat brain: expression in areas associated with learning and memory. Neuron 6, 431–443 (1991).
    Article CAS PubMed Google Scholar
  34. Mayford, M. et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 1678–1683 (1996).
    Article CAS PubMed Google Scholar
  35. Fykse, E.M., Li, C. & Sudhof, T.C. Phosphorylation of rabphilin-3A by Ca2+/calmodulin-and cAMP-dependent protein kinases in vitro. J. Neurosci. 15, 2385–2395 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  36. Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F. & Huganir, R.L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000).
    Article CAS PubMed Google Scholar
  37. Tingley, W.G. et al. Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J. Biol. Chem. 272, 5157–5166 (1997).
    Article CAS PubMed Google Scholar
  38. Myhrer, T. Exploratory behavior and reaction to novelty in rats with hippocampal perforant path systems disrupted. Behav. Neurosci. 102, 356–362 (1988).
    Article CAS PubMed Google Scholar
  39. Reed, J.M. & Squire, L.R. Impaired recognition memory in patients with lesions limited to the hippocampal formation. Behav. Neurosci. 111, 667–675 (1997).
    Article CAS PubMed Google Scholar
  40. Grewal, S.S. et al. Neuronal calcium activates a Rap1 and B–Raf signaling pathway via the cyclic adenosine monophosphate-dependent protein kinase. J. Biol. Chem. 275, 3722–3728 (2000).
    Article CAS PubMed Google Scholar
  41. Impey, S. et al. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21, 869–883 (1998).
    Article CAS PubMed Google Scholar
  42. Impey, S., Obrietan, K. & Storm, D.R. Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 23, 11–14 (1999).
    Article CAS PubMed Google Scholar
  43. Vianna, M.R., Igaz, L.M., Coitinho, A.S., Medina, J.H. & Izquierdo, I. Memory extinction requires gene expression in rat hippocampus. Neurobiol. Learn. Mem. 79, 199–203 (2003).
    Article CAS PubMed Google Scholar
  44. Szapiro, G., Vianna, M.R., McGaugh, J.L., Medina, J.H. & Izquierdo, I. The role of NMDA glutamate receptors, PKA, MAPK, and CAMKII in the hippocampus in extinction of conditioned fear. Hippocampus 13, 53–58 (2003).
    Article CAS PubMed Google Scholar
  45. Malleret, G. et al. Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell 104, 675–686 (2001).
    Article CAS PubMed Google Scholar
  46. Thomas, M.J., Moody, T.D., Makhinson, M. & O'Dell, T.J. Activity-dependent beta-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron 17, 475–482 (1996).
    Article CAS PubMed Google Scholar
  47. Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).
    Article CAS PubMed Google Scholar
  48. Koh, M.T. & Bernstein, I.L. Inhibition of protein kinase A activity during conditioned taste aversion retrieval: interference with extinction or reconsolidation of a memory? Neuroreport 14, 405–407 (2003).
    Article CAS PubMed Google Scholar
  49. Yamamoto, M. et al. Hippocampal level of neural specific adenylyl cyclase type I is decreased in Alzheimer's disease. Biochim. Biophys. Acta. 1535, 60–68 (2000).
    Article CAS PubMed Google Scholar
  50. Cooke, S.F. & Bliss, T.V. The genetic enhancement of memory. Cell. Mol. Life Sci. 60, 1–5 (2003).
    Article CAS PubMed Google Scholar

Download references