Overexpression of type-1 adenylyl cyclase in mouse forebrain enhances recognition memory and LTP (original) (raw)
References
Dudai, Y. Molecular bases of long-term memories: a question of persistence. Curr. Opin. Neurobiol.12, 211–216 (2002). ArticleCASPubMed Google Scholar
Matynia, A., Kushner, S.A. & Silva, A.J. Genetic approaches to molecular and cellular cognition: a focus on LTP and learning and memory. Annu. Rev. Genet.36, 687–720 (2002). ArticleCASPubMed Google Scholar
Tully, T., Bourtchouladze, R., Scott, R. & Tallman, J. Targeting the CREB pathway for memory enhancers. Nat. Rev. Drug. Discov.2, 267–277 (2003). ArticleCASPubMed Google Scholar
Wang, H. & Storm, D.R. Calmodulin-regulated adenylyl cyclases: cross-talk and plasticity in the central nervous system. Mol. Pharmacol.63, 463–468 (2003). ArticlePubMed Google Scholar
Weeber, E.J. & Sweatt, J.D. Molecular neurobiology of human cognition. Neuron33, 845–848 (2002). ArticleCASPubMed Google Scholar
Waddell, S., Armstrong, J.D., Kitamoto, T., Kaiser, K. & Quinn, W.G. The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell103, 805–813 (2000). ArticleCASPubMed Google Scholar
Chen, C.N., Denome, S. & Davis, R.L. Molecular analysis of cDNA clones and the corresponding genomic coding sequences of the Drosophila dunce+ gene, the structural gene for cAMP phosphodiesterase. Proc. Natl. Acad. Sci. USA83, 9313–9317 (1986). ArticleCASPubMedPubMed Central Google Scholar
Livingstone, M.S., Sziber, P.P. & Quinn, W.G. Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell37, 205–215 (1984). ArticleCASPubMed Google Scholar
Skoulakis, E.M., Kalderon, D. & Davis, R.L. Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron11, 197–208 (1993). ArticleCASPubMed Google Scholar
Yin, J.C. et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell79, 49–58 (1994). ArticleCASPubMed Google Scholar
Yin, J.C., Del Vecchio, M., Zhou, H. & Tully, T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell81, 107–115 (1995). ArticleCASPubMed Google Scholar
Bartsch, D., Casadio, A., Karl, K.A., Serodio, P. & Kandel, E.R. CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell95, 211–223 (1998). ArticleCASPubMed Google Scholar
Castellucci, V.F., Nairn, A., Greengard, P., Schwartz, J.H. & Kandel, E.R. Inhibitor of adenosine 3':5′-monophosphate-dependent protein kinase blocks presynaptic facilitation in Aplysia. J. Neurosci.2, 1673–1681 (1982). ArticleCASPubMedPubMed Central Google Scholar
Dash, P.K., Hochner, B. & Kandel, E.R. Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature345, 718–721 (1990). ArticleCASPubMed Google Scholar
Gerlai, R. Hippocampal LTP and memory in mouse strains: is there evidence for a causal relationship? Hippocampus12, 657–666 (2002). ArticlePubMed Google Scholar
Lisman, J.E. & McIntyre, C.C. Synaptic plasticity: a molecular memory switch. Curr. Biol.11, R788–791 (2001). ArticleCASPubMed Google Scholar
Martin, S.J. & Morris, R.G. New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus12, 609–636 (2002). ArticleCASPubMed Google Scholar
Abel, T. et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell88, 615–626 (1997). ArticleCASPubMed Google Scholar
Blitzer, R.D., Wong, T., Nouranifar, R., Iyengar, R. & Landau, E.M. Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron15, 1403–1414 (1995). ArticleCASPubMed Google Scholar
Frey, U., Huang, Y.Y. & Kandel, E.R. Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science260, 1661–1664 (1993). ArticleCASPubMed Google Scholar
Wong, S.T. et al. Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron23, 787–798 (1999). ArticleCASPubMed Google Scholar
Wu, Z.L. et al. Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc. Natl. Acad. Sci. USA92, 220–224 (1995). ArticleCASPubMedPubMed Central Google Scholar
Salin, P.A., Malenka, R.C. & Nicoll, R.A. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron16, 797–803 (1996). ArticleCASPubMed Google Scholar
Villacres, E.C., Wong, S.T., Chavkin, C. & Storm, D.R. Type I adenylyl cyclase mutant mice have impaired mossy fiber long-term potentiation. J. Neurosci.18, 3186–3194 (1998). ArticleCASPubMedPubMed Central Google Scholar
Huang, Y.Y. et al. A genetic test of the effects of mutations in PKA on mossy fiber LTP and its relation to spatial and contextual learning. Cell83, 1211–1222 (1995). ArticleCASPubMed Google Scholar
Nguyen, P.V. & Kandel, E.R. A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J. Neurosci.16, 3189–3198 (1996). ArticleCASPubMedPubMed Central Google Scholar
Bramham, C.R., Bacher-Svendsen, K. & Sarvey, J.M. LTP in the lateral perforant path is beta-adrenergic receptor-dependent. Neuroreport8, 719–724 (1997). ArticleCASPubMed Google Scholar
Storm, D.R., Hansel, C., Hacker, B., Parent, A. & Linden, D.J. Impaired cerebellar long-term potentiation in type I adenylyl cyclase mutant mice. Neuron20, 1199–1210 (1998). ArticleCASPubMed Google Scholar
Pineda, V.V. et al. Removal of Giα1 constraints on adenylyl cyclase in the hippocampus enhances LTP and impairs memory formation. Neuron41, 153–163 (2004). ArticleCASPubMed Google Scholar
Connolly, J.B. et al. Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science274, 2104–2107 (1996). ArticleCASPubMed Google Scholar
Barad, M., Bourtchouladze, R., Winder, D.G., Golan, H. & Kandel, E. Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory. Proc. Natl. Acad. Sci. USA95, 15020–15025 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bourtchouladze, R. et al. A mouse model of Rubinstein-Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc. Natl. Acad. Sci. USA100, 10518–10522 (2003). ArticleCASPubMedPubMed Central Google Scholar
Xia, Z.G., Refsdal, C.D., Merchant, K.M., Dorsa, D.M. & Storm, D.R. Distribution of mRNA for the calmodulin-sensitive adenylate cyclase in rat brain: expression in areas associated with learning and memory. Neuron6, 431–443 (1991). ArticleCASPubMed Google Scholar
Mayford, M. et al. Control of memory formation through regulated expression of a CaMKII transgene. Science274, 1678–1683 (1996). ArticleCASPubMed Google Scholar
Fykse, E.M., Li, C. & Sudhof, T.C. Phosphorylation of rabphilin-3A by Ca2+/calmodulin-and cAMP-dependent protein kinases in vitro. J. Neurosci.15, 2385–2395 (1995). ArticleCASPubMedPubMed Central Google Scholar
Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F. & Huganir, R.L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature405, 955–959 (2000). ArticleCASPubMed Google Scholar
Tingley, W.G. et al. Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J. Biol. Chem.272, 5157–5166 (1997). ArticleCASPubMed Google Scholar
Myhrer, T. Exploratory behavior and reaction to novelty in rats with hippocampal perforant path systems disrupted. Behav. Neurosci.102, 356–362 (1988). ArticleCASPubMed Google Scholar
Reed, J.M. & Squire, L.R. Impaired recognition memory in patients with lesions limited to the hippocampal formation. Behav. Neurosci.111, 667–675 (1997). ArticleCASPubMed Google Scholar
Grewal, S.S. et al. Neuronal calcium activates a Rap1 and B–Raf signaling pathway via the cyclic adenosine monophosphate-dependent protein kinase. J. Biol. Chem.275, 3722–3728 (2000). ArticleCASPubMed Google Scholar
Impey, S. et al. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron21, 869–883 (1998). ArticleCASPubMed Google Scholar
Impey, S., Obrietan, K. & Storm, D.R. Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron23, 11–14 (1999). ArticleCASPubMed Google Scholar
Vianna, M.R., Igaz, L.M., Coitinho, A.S., Medina, J.H. & Izquierdo, I. Memory extinction requires gene expression in rat hippocampus. Neurobiol. Learn. Mem.79, 199–203 (2003). ArticleCASPubMed Google Scholar
Szapiro, G., Vianna, M.R., McGaugh, J.L., Medina, J.H. & Izquierdo, I. The role of NMDA glutamate receptors, PKA, MAPK, and CAMKII in the hippocampus in extinction of conditioned fear. Hippocampus13, 53–58 (2003). ArticleCASPubMed Google Scholar
Malleret, G. et al. Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell104, 675–686 (2001). ArticleCASPubMed Google Scholar
Thomas, M.J., Moody, T.D., Makhinson, M. & O'Dell, T.J. Activity-dependent beta-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron17, 475–482 (1996). ArticleCASPubMed Google Scholar
Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature418, 530–534 (2002). ArticleCASPubMed Google Scholar
Koh, M.T. & Bernstein, I.L. Inhibition of protein kinase A activity during conditioned taste aversion retrieval: interference with extinction or reconsolidation of a memory? Neuroreport14, 405–407 (2003). ArticleCASPubMed Google Scholar
Yamamoto, M. et al. Hippocampal level of neural specific adenylyl cyclase type I is decreased in Alzheimer's disease. Biochim. Biophys. Acta.1535, 60–68 (2000). ArticleCASPubMed Google Scholar
Cooke, S.F. & Bliss, T.V. The genetic enhancement of memory. Cell. Mol. Life Sci.60, 1–5 (2003). ArticleCASPubMed Google Scholar