The neural basis of puberty and adolescence (original) (raw)

References

  1. Silverman, A., Livne, I. & Witkin, J. The gonadotropin-releasing hormone (GnRH) neuronal systems:immunocytochemistry and in situ hybridization. in The Physiology of Reproduction (eds. Knobil, E. & Neill, J.) 1683–1709 (Raven Press, New York, 1994).
    Google Scholar
  2. Jennes, L.J. & Conn, P.M. Gonadotropin-releasing hormone. in Hormones, Brain and Behavior (eds. Pfaff, D.W., Arnold, A.P., Etgen, A.M., Fahrbach, S.E. & Rubin, R.T.) 51–79 (Academic Press, New York, 2002).
    Google Scholar
  3. Moenter, S.M., Defazio, R.A., Straume, M. & Nunemaker, C.S. Steroid regulation of GnRH neurons. Ann. NY Acad. Sci. 1007, 143–152 (2003).
    CAS PubMed Google Scholar
  4. Han, S.K., Todman, M.G. & Herbison, A.E. Endogenous GABA release inhibits the firing of adult gonadotropin-releasing hormone neurons. Endocrinology 145, 495–499 (2004).
    CAS PubMed Google Scholar
  5. Abraham, I.M., Han, S.K., Todman, M.G., Korach, K.S. & Herbison, A.E. Estrogen receptor beta mediates rapid estrogen actions on gonadotropin-releasing hormone neurons in vivo. J. Neurosci. 23, 5771–5777 (2003).
    CAS PubMed Google Scholar
  6. Kuehl-Kovarik, M.C. et al. Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin-releasing hormone neurons genetically targeted with green fluorescent protein. J. Neurosci. 22, 2313–2322 (2002).
    CAS PubMed Google Scholar
  7. Kelly, M.J. & Wagner, E.J. GnRH neurons and episodic bursting activity. Trends Endocrinol. Metab. 13, 409–410 (2002).
    CAS PubMed Google Scholar
  8. Kelly, M.J., Qiu, J. & Ronnekleiv, O.K. Estrogen modulation of G-protein-coupled receptor activation of potassium channels in the central nervous system. Ann. NY Acad. Sci. 1007, 6–16 (2003).
    CAS PubMed Google Scholar
  9. Wilson, M. Factors determining the onset of puberty. in Sexual Differentiation (eds. Gerall, A., Moltz, H. & Ward, I.) 275–312 (Plenum Press, New York, 1992).
    Google Scholar
  10. Ebling, F.J. & Cronin, A.S. The neurobiology of reproductive development. Neuroreport 11, R23–R33 (2000).
    CAS PubMed Google Scholar
  11. Bronson, F.H. & Rissman, E.F. The biology of puberty. Biol. Rev. Camb. Philos. Soc. 61, 157–195 (1986).
    CAS PubMed Google Scholar
  12. Schneider, J.E. & Watts, A.G. Energy balance, ingestive behavior, and reproductive success. in Hormones, Brain and Behavior (eds. Pfaff, D.W., Arnold, A.P., Etgen, A.M., Fahrbach, S.E. & Rubin, R.T.) 435–523 (Academic Press, New York, 2002).
    Google Scholar
  13. Foster, D.L. & Nagatani, S. Physiological perspectives on leptin as a regulator of reproduction: role in timing puberty. Biol. Reprod. 60, 205–215 (1999).
    CAS PubMed Google Scholar
  14. Foster, D.L., Ebling, F.J.P. & Claypool, L.E. Timing of puberty by photoperiod. Reprod. Nutr. Dev. 28, 349–364 (1988).
    CAS PubMed Google Scholar
  15. Mann, D.R. & Plant, T.M. Leptin and pubertal development. Semin. Reprod. Med. 20, 93–102 (2002).
    CAS PubMed Google Scholar
  16. Urbanski, H.F. Leptin and puberty. Trends Endocrinol. Metab. 12, 428–429 (2001).
    CAS PubMed Google Scholar
  17. Cheung, C.C., Thornton, J.E., Nurani, S.D., Clifton, D.K. & Steiner, R.A. A reassessment of leptin's role in triggering the onset of puberty in the rat and mouse. Neuroendocrinology 74, 12–21 (2001).
    CAS PubMed Google Scholar
  18. Schneider, J.E. Energy balance and reproduction. Physiol. Behav. 81, 289–317 (2004).
    CAS PubMed Google Scholar
  19. Ebling, F.J. & Foster, D.L. Pineal melatonin rhythms and the timing of puberty in mammals. Experientia 45, 946–954 (1989).
    CAS PubMed Google Scholar
  20. Foster, D.L., Ebling, F.J. & Claypool, L.E. Timing of puberty by photoperiod. Reprod. Nutr. Dev. 28, 349–364 (1988).
    CAS PubMed Google Scholar
  21. Turek, F. & Van Cauter, E. Rhythms in reproduction. in The Physiology of Reproduction (eds. Knobil, E. & Neill, J.) 487–540 (Raven, New York, 1994).
    Google Scholar
  22. Rissman, E.F. Mating induces puberty in the female musk shrew. Biol. Reprod. 47, 473–477 (1992).
    CAS PubMed Google Scholar
  23. Bronson, F.H. & Maruniak, J.A. Male-induced puberty in female mice: evidence for a synergistic action of social cues. Biol. Reprod. 13, 94–98 (1975).
    CAS PubMed Google Scholar
  24. Wierman, M.E. et al. Repression of gonadotropin-releasing hormone promoter activity by the POU homeodomain transcription factor SCIP/Oct-6/Tst-1: a regulatory mechanism of phenotype expression? Mol. Cell. Biol. 17, 1652–1665 (1997).
    CAS PubMed PubMed Central Google Scholar
  25. Lee, B.J. et al. TTF-1, a homeodomain gene required for diencephalic morphogenesis, is postnatally expressed in the neuroendocrine brain in a developmentally regulated and cell-specific fashion. Mol. Cell. Neurosci. 17, 107–126 (2001).
    CAS PubMed Google Scholar
  26. Ojeda, S.R. et al. The Oct-2 POU domain gene in the neuroendocrine brain: a transcriptional regulator of mammalian puberty. Endocrinology 140, 3774–3789 (1999).
    CAS PubMed Google Scholar
  27. Ojeda, S.R. & Terasawa, E. Neuroendocrine regulation of puberty. in Hormones, Brain and Behavior (eds. Pfaff, D.W., Arnold, A.P., Etgen, A.M., Fahrbach, S.E. & Rubin, R.T.) 589–659 (Academic Press, New York, 2002).
    Google Scholar
  28. Seminara, S.B. et al. The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614–1627 (2003).
    CAS PubMed Google Scholar
  29. de Roux, N. et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl. Acad. Sci. USA 100, 10972–10976 (2003).
    CAS PubMed Google Scholar
  30. Wood, R.I., Robinson, J.E., Forsdike, R.A., Padmanabhan, V. & Foster, D.L. Sexual differentiation of the timing of sexual maturation in sheep. in The Onset of Puberty in Perspective (eds. Bourguignon, J.-P. & Plant, T.M.) 269–287 (Elsevier, Amsterdam, 2000).
    Google Scholar
  31. Foster, D.L., Padmanabhan, V., Wood, R.I. & Robinson, J.E. Sexual differentiation of the neuroendocrine control of gonadotrophin secretion: concepts derived from sheep models. Reprod. Suppl. 59, 83–99 (2002).
    CAS PubMed Google Scholar
  32. Wood, R.I., Newman, S.W., Lehman, M.N. & Foster, D.L. Sexual differentiaton of the timing of sexual maturation in sheep. GnRH neurons in the fetal lamb hypothalamus are similar in males and females. Neuroendocrinology 55, 427–433 (1992).
    CAS PubMed Google Scholar
  33. Wray, S. & Hoffman, G.E. Postnatal morphological changes in rat LH-RH neurons correlated with sexual maturation. Neuroendocrinology 43, 93–97 (1986).
    CAS PubMed Google Scholar
  34. Goldsmith, P.C. & Song, T. The gonadotropin-releasing hormone containing ventral hypothalamic tract in the fetal rhesus monkey. J. Comp. Neurol. 257, 130–139 (1987).
    CAS PubMed Google Scholar
  35. Kim, S.-J., Foster, D.L. & Wood, R.I. Prenatal testosterone masculinizes synaptic input to GnRH neurons in sheep. Biol. Reprod. 61, 599–605 (1999).
    CAS PubMed Google Scholar
  36. Plant, T. Puberty in primates. in The Physiology of Reproduction (eds. Knobil, E. & Neill, J.) 453–485 (Raven Press, New York, 1994).
    Google Scholar
  37. Ojeda, S. & Urbanski, H. Puberty in the rat. in The Physiology of Reproduction (eds. Knobil, E. & Neill, J.) 452–485 (Raven Press, New York, 1994).
    Google Scholar
  38. Terasawa, E. & Fernandez, D.L. Neurobiological mechanisms of the onset of puberty in primates. Endocr. Rev. 22, 111–151 (2001).
    CAS PubMed Google Scholar
  39. Urbanski, H.F. & Ojeda, S.R. Gonadal-independent activation of enhanced afternoon luteinizing hormone release during pubertal development in the female rat. Endocrinology 121, 907–913 (1987).
    CAS PubMed Google Scholar
  40. Winter, J.S.D. & Faiman, C. Serum gonadotropin concentrations in agonadal children and adults. J. Clin. Endocrinol. Metab. 35, 561–564 (1972).
    CAS PubMed Google Scholar
  41. Conte, F.A., Grumbach, M.M. & Kaplan, S.L. A diphasic pattern of gonadotropin secretion in patients with the syndrome of gonadal dysgenesis. J. Clin. Endocrinol. Metab. 40, 670–674 (1975).
    CAS PubMed Google Scholar
  42. Foster, D.L. Comparative development of mammalian females:proposed analogies among patterns of LHsecretion in various species. in Problems in Pediatric Endocrinology (eds. La Cauza, C. & Root, A.W.) 193–210 (Academic Press, New York, 1980).
    Google Scholar
  43. Ramirez, V.D. & McCann, S.M. Inhibitory effect of testosterone on luteinizing hormone secretion in immature and adult rats. Endocrinology 76, 412–417 (1965).
    CAS PubMed Google Scholar
  44. Foster, D. Puberty in the sheep. in The Physiology of Reproduction (eds. Knobil, E. & Neill, J.) 411–451 (Raven Press, New York, 1994).
    Google Scholar
  45. Sisk, C.L. & Turek, F.W. Developmental time course of pubertal and photoperiodic changes in testosterone negative feedback on gonadotropin secretion in the golden hamster. Endocrinology 112, 1208–1216 (1983).
    CAS PubMed Google Scholar
  46. Sisk, C. Evidence that a decrease in testosterone negative feedback mediates the pubertal increase in luteinizing hormone pulse frequency in male ferrets. Biol. Reprod. 37, 73–81 (1987).
    CAS PubMed Google Scholar
  47. Rapisarda, J., Bergman, K., Steiner, R. & Foster, D. Response to estradiol inhibition of tonic luteinizing hormone secretion decreased during the final stage of puberty in the rhesus monkey. Endocrinology 112, 1172–1179 (1983).
    CAS PubMed Google Scholar
  48. Plant, T.M. Neurobiological bases underlying the control of the onset of puberty in the rhesus monkey: a representative higher primate. Front. Neuroendocrinol. 22, 107–139 (2001).
    CAS PubMed Google Scholar
  49. Brann, D. & Mahesh, V. Excitatory amino acids: Evidence for a role in the control of reproduction and anterior pituitary hormone secretion. Endocr. Rev. 18, 678–700 (1997).
    CAS PubMed Google Scholar
  50. Ojeda, S.R. et al. Glia-to-neuron signaling and the neuroendocrine control of female puberty. Ann. Med. 35, 244–255 (2003).
    PubMed Google Scholar
  51. Petersen, S., McCrone, S., Coy, D., Adelman, J. & Mahan, L. GABAa receptor subunit mRNA in cells of the preoptic area: colocalization with LHRH mRNA using dual-label in situ hybridization histochemistry. Endocr. J. 1, 29–34 (1993).
    Google Scholar
  52. Gore, A., Wu, T., Rosenberg, J. & Roberts, J. Gonadotropin-releasing hormone and NMDA receptor gene expression and colocalization change during puberty in female rats. J. Neurosci. 16, 5281–5289 (1996).
    CAS PubMed Google Scholar
  53. Eyigor, O. & Jennes, L. Expression of glutamate receptor subunit mRNAs in gonadotropin-releasing hormone neurons during the sexual maturation of the female rat. Neuroendocrinology 66, 122–129 (1997).
    CAS PubMed Google Scholar
  54. Witkin, J., O'Sullivan, H. & Ferin, M. Glial ensheathment of GnRH neurons in pubertal female rhesus macaques. J. Neuroendocrinol. 7, 665–671 (1995).
    CAS PubMed Google Scholar
  55. Witkin, J. & Romero, M. Comparison of ultrastructural characteristics of gonadotropin-releasing hormone neurons in prepubertal and adult male rats. Neuroscience 64, 1145–1151 (1995).
    CAS PubMed Google Scholar
  56. Han, S.K., Abraham, I.M. & Herbison, A.E. Effect of GABA on GnRH neurons switches from depolarization to hyperpolarization at puberty in the female mouse. Endocrinology 143, 1459–1466 (2002).
    CAS PubMed Google Scholar
  57. Baum, M.J. Precocious mating in male rats following treatment with androgen or estrogen. J. Comp. Physiol. Psychol. 78, 356–367 (1972).
    CAS PubMed Google Scholar
  58. Sodersten, P., Damassa, D.A. & Smith, E.R. Sexual behavior in developing male rats. Horm. Behav. 8, 320–341 (1977).
    CAS PubMed Google Scholar
  59. Sisk, C.L., Berglund, L.A., Tang, Y.P. & Venier, J.E. Photoperiod modulates pubertal shifts in behavioral responsiveness to testosterone. J. Biol. Rhythms 7, 329–339 (1992).
    CAS PubMed Google Scholar
  60. Meek, L., Romeo, R., Novak, C. & Sisk, C. Actions of testosterone in prepubertal and postpubertal male hamsters: dissociation of effects on reproductive behavior and brain androgen receptor immunoreactivity. Horm. Behav. 31, 75–88 (1997).
    CAS PubMed Google Scholar
  61. Romeo, R.D., Richardson, H.N. & Sisk, C.L. Puberty and the maturation of the male brain and sexual behavior: recasting a behavioral potential. Neurosci. Biobehav. Rev. 26, 381–391 (2002).
    PubMed Google Scholar
  62. Olster, D.H. & Blaustein, J.D. Development of progesterone-facilitated lordosis in female guinea pigs: relationship to neural estrogen and progestin receptors. Brain Res. 484, 168–176 (1989).
    CAS PubMed Google Scholar
  63. Meisel, R. & Sachs, B. The physiology of male sexual behavior. in The Physiology of Reproduction (eds. Knobil, E. & Neill, J.) 3–105 (Raven Press, New York, 1994).
    Google Scholar
  64. Hull, E.M., Meisel, R.L. & Sachs, B.D. Male sexual behavior. in Hormones, Brain and Behavior (eds. Pfaff, D.W., Arnold, A.P., Etgen, A.M., Fahrbach, S.E. & Rubin, R.T.) 3–137 (Academic Press, New York, 2002).
    Google Scholar
  65. Pfaff, D.W., Schwartz-Giblin, S., McCarthy, M.M. & Kow, L.-M. Cellular and molecular mechanisms of female reproductive behaviors. in The Physiology of Reproduction (eds. Knobil, E. & Neill, J. D.) 107–220 (Raven Press, New York, 1994).
    Google Scholar
  66. Blaustein, J.D. & Erskine, M.S. Feminine sexual behavior: cellular integration of hormonal and afferent information in the rodent forebrain. in Hormones, Brain and Behavior (eds. Pfaff, D.W., Arnold, A.P., Etgen, A.M., Fahrbach, S.E. & Rubin, R.T.) 139–214 (Academic Press, New York, 2002).
    Google Scholar
  67. Morris, J.A., Jordan, C.L. & Breedlove, S.M. Sexual differentiation of the vertebrate nervous system. Nat. Neurosci. 7, 1034–1039 (2004).
    CAS PubMed Google Scholar
  68. Sisk, C.L., Schulz, K.M. & Zehr, J.L. Puberty: A finishing school for male social behavior. Ann. NY Acad. Sci. 1007, 189–198 (2003).
    PubMed Google Scholar
  69. Schulz, K.M. et al. Gonadal hormones masculinize and defeminize reproductive behaviors during puberty in the male Syrian hamster. Horm. Behav. 45, 242–249 (2004).
    CAS PubMed Google Scholar
  70. Eichmann, F. & Holst, D.V. Organization of territorial marking behavior by testosterone during puberty in male tree shrews. Physiol. Behav. 65, 785–791 (1999).
    CAS PubMed Google Scholar
  71. Primus, R. & Kellogg, C. Gonadal hormones during puberty organize environment-related social interaction in the male rat. Horm. Behav. 24, 311–323 (1990).
    CAS PubMed Google Scholar
  72. Primus, R.J. & Kellogg, C.K. Pubertal-related changes influence the development of environment-related social interaction in the male rat. Dev. Psychobiol. 22, 633–643 (1989).
    CAS PubMed Google Scholar
  73. Hull, E.M. et al. Hormone-neurotransmitter interactions in the control of sexual behavior. Behav. Brain Res. 105, 105–116 (1999).
    CAS PubMed Google Scholar
  74. Everitt, B. Sexual motivation: a neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neurosci. Biobehav. Rev. 14, 217–232 (1990).
    CAS PubMed Google Scholar
  75. Wood, R. & Newman, S. Hormonal influence on neurons of the mating behavior pathway in male hamsters. in Neurobiological Effects of Sex Steroid Hormones (eds. Micevych, P. & Hammer, R.) 3–39 (Cambridge Univ. Press, Cambridge, 1995).
    Google Scholar
  76. Pfaus, J.G. Neurobiology of sexual behavior. Curr. Opin. Neurobiol. 9, 751–758 (1999).
    CAS PubMed Google Scholar
  77. Davis, E.C., Shryne, J.E. & Gorski, R.A. Structural sexual dimorphisms in the anteroventral periventricular nucleus of the rat hypothalamus are sensitive to gonadal steroids perinatally, but develop peripubertally. Neuroendocrinology 63, 142–148 (1996).
    CAS PubMed Google Scholar
  78. Nunez, J.L., Sodhi, J. & Juraska, J.M. Ovarian hormones after postnatal day 20 reduce neuron number in the rat primary visual cortex. J. Neurobiol. 52, 312–321 (2002).
    CAS PubMed Google Scholar
  79. Pinos, H. et al. The development of sex differences in the locus coeruleus of the rat. Brain Res. Bull. 56, 73–78 (2001).
    CAS PubMed Google Scholar
  80. Goldstein, L.A., Kurz, E.M. & Sengelaub, D.R. Androgen regulation of dendritic growth and retraction in the development of a sexually dimorphic spinal nucleus. J. Neurosci. 10, 935–946 (1990).
    CAS PubMed Google Scholar
  81. Chung, W.C., De Vries, G.J. & Swaab, D.F. Sexual differentiation of the bed nucleus of the stria terminalis in humans may extend into adulthood. J. Neurosci. 22, 1027–1033 (2002).
    CAS PubMed Google Scholar
  82. Andersen, S.L., Rutstein, M., Benzo, J.M., Hostetter, J.C. & Teicher, M.H. Sex differences in dopamine receptor overproduction and elimination. Neuroreport 8, 1495–1498 (1997).
    CAS PubMed Google Scholar
  83. Andersen, S.L., Thompson, A.P., Krenzel, E. & Teicher, M.H. Pubertal changes in gonadal hormones do not underlie adolescent dopamine receptor overproduction. Psychoneuroendocrinology 27, 683–691 (2002).
    CAS PubMed Google Scholar
  84. Feinberg, I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J. Psychiatr. Res. 17, 319–334 (1982).
    PubMed Google Scholar
  85. Andersen, S.L. & Teicher, M.H. Sex differences in dopamine receptors and their relevance to ADHD. Neurosci. Biobehav. Rev. 24, 137–141 (2000).
    CAS PubMed Google Scholar
  86. Johnston, R.E. & Coplin, B. Development of responses to vaginal secretion and other substances in golden hamsters. Behav. Neural Biol. 25, 473–489 (1979).
    CAS PubMed Google Scholar
  87. Romeo, R., Parfitt, D., Richardson, H. & Sisk, C. Pheromones elicit equivalent levels of fos-immunoreactivity in prepubertal and adult male Syrian hamsters. Horm. Behav. 34, 48–55 (1998).
    CAS PubMed Google Scholar
  88. Schulz, K.M. et al. Medial preoptic area dopaminergic responses to female pheromones develop during puberty in the male Syrian hamster. Brain Res. 988, 139–145 (2003).
    CAS PubMed Google Scholar
  89. Wallen, K. Sex and context: hormones and primate sexual motivation. Horm. Behav. 40, 339–357 (2001).
    CAS PubMed Google Scholar
  90. Floody, O., Comerci, J. & Lisk, R. Hormonal control of sex differences in ultrasound production by hamsters. Horm. Behav. 21, 17–35 (1987).
    CAS PubMed Google Scholar
  91. Paredes, R., Lopez, M. & Baum, M. Testosterone augments neuronal Fos responses to estrous odors throughout the vomeronasal projection pathway of gonadectomized male and female rats. Horm. Behav. 33, 48–57 (1998).
    CAS PubMed Google Scholar
  92. Woodley, S.K. & Baum, M.J. Effects of sex hormones and gender on attraction thresholds for volatile anal scent gland odors in ferrets. Horm. Behav. 44, 110–118 (2003).
    CAS PubMed Google Scholar
  93. Romeo, R.D. & Sisk, C.L. Pubertal and seasonal plasticity in the amygdala. Brain Res. 889, 71–77 (2001).
    CAS PubMed Google Scholar
  94. Hebbard, P.C., King, R.R., Malsbury, C.W. & Harley, C.W. Two organizational effects of pubertal testosterone in male rats: transient social memory and a shift away from long-term potentiation following a tetanus in hippocampal CA1. Exp. Neurol. 182, 470–475 (2003).
    CAS PubMed Google Scholar
  95. Wallen, K. & Zehr, J.L. Hormones and history: the evolution and development of primate female sexuality. J. Sex Res. 41, 101–112 (2004).
    PubMed PubMed Central Google Scholar
  96. Herdt, G. & McClintock, M. The magical age of 10. Arch. Sex. Behav. 29, 587–606 (2000).
    CAS PubMed Google Scholar
  97. Benes, F.M., Turtle, M., Khan, Y. & Farol, P. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch. Gen. Psychiatry 51, 477–484 (1994).
    CAS PubMed Google Scholar
  98. Gogtay, N. et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. USA 101, 8174–8179 (2004).
    CAS PubMed Google Scholar
  99. Paus, T. et al. Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res. Bull. 54, 255–266 (2001).
    CAS PubMed Google Scholar
  100. Sowell, E.R., Trauner, D.A., Gamst, A. & Jernigan, T.L. Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Dev. Med. Child Neurol. 44, 4–16 (2002).
    PubMed Google Scholar
  101. Sowell, E.R., Thompson, P.M., Holmes, C.J., Jernigan, T.L. & Toga, A.W. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat. Neurosci. 2, 859–861 (1999).
    CAS PubMed Google Scholar
  102. Giedd, J.N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2, 861–863 (1999).
    CAS PubMed Google Scholar
  103. De Bellis, M.D. et al. Sex differences in brain maturation during childhood and adolescence. Cereb. Cortex 11, 552–557 (2001).
    CAS PubMed Google Scholar
  104. Huttenlocher, P.R. & Dabholkar, A.S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178 (1997).
    CAS PubMed Google Scholar
  105. Bourgeois, J.P. & Rakic, P. Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J. Neurosci. 13, 2801–2820 (1993).
    CAS PubMed Google Scholar
  106. Andersen, S.L., Thompson, A.T., Rutstein, M., Hostetter, J.C. & Teicher, M.H. Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats. Synapse 37, 167–169 (2000).
    CAS PubMed Google Scholar
  107. Nunez, J.L., Lauschke, D.M. & Juraska, J.M. Cell death in the development of the posterior cortex in male and female rats. J. Comp. Neurol. 436, 32–41 (2001).
    CAS PubMed Google Scholar
  108. Nunez, J.L., Jurgens, H.A. & Juraska, J.M. Androgens reduce cell death in the developing rat visual cortex. Brain Res. Dev. Brain Res. 125, 83–88 (2000).
    CAS PubMed Google Scholar
  109. Cunningham, M.G., Bhattacharyya, S. & Benes, F.M. Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence. J. Comp. Neurol. 453, 116–130 (2002).
    Google Scholar
  110. Woo, T.U., Pucak, M.L., Kye, C.H., Matus, C.V. & Lewis, D.A. Peripubertal refinement of the intrinsic and associational circuitry in monkey prefrontal cortex. Neuroscience 80, 1149–1158 (1997).
    CAS PubMed Google Scholar
  111. Andersen, S.L. Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci. Biobehav. Rev. 27, 3–18 (2003).
    PubMed Google Scholar
  112. Spear, L.P. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 24, 417–463 (2000).
    CAS PubMed Google Scholar
  113. Kelley, A.E., Schochet, T. & Landry, C.F. Risk taking and novelty seeking in adolescence: introduction to part I. Ann. NY Acad. Sci. 1021, 27–32 (2004).
    PubMed Google Scholar

Download references