Gould, E., Beylin, A., Tanapat, P., Reeves, A. & Shors, T.J. Learning enhances adult neurogenesis in the hippocampal formation. Nat. Neurosci.2, 260–265 (1999). ArticleCAS Google Scholar
Lois, C., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Chain migration of neuronal precursors. Science271, 978–981 (1996). ArticleCAS Google Scholar
van Praag, H. et al. Functional neurogenesis in adult hippocampus. Nature415, 1030–1034 (2002). ArticleCAS Google Scholar
Luskin, M.B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron11, 173–189 (1993). ArticleCAS Google Scholar
Johansson, C.B. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell96, 25–34 (1999). ArticleCAS Google Scholar
Capela, A. & Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron35, 865–875 (2002). Article Google Scholar
Chiasson, B.J., Tropepe, V., Morshead, C.M. & van der Kooy, D. Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J. Neurosci.19, 4462–4471 (1999). ArticleCAS Google Scholar
Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell97, 703–716 (1999). ArticleCAS Google Scholar
Laywell, E.D., Rakic, P., Kukekov, V.G., Holland, E.C. & Steindler, D.A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl. Acad. Sci. USA97, 13883–13888 (2000). ArticleCAS Google Scholar
Seri, B., Garcia-Verdugo, J.M., McEwen, B.S. & Alvarez-Buylla, A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci.21, 7153–7160 (2001). ArticleCAS Google Scholar
Imura, T., Kornblum, H.I. & Sofroniew, M.V. The predominant neural stem cell isolated from postnatal and adult forebrain but not from early embryonic forebrain expresses GFAP. J. Neurosci.23, 2824–2832 (2003). ArticleCAS Google Scholar
Morshead, C.M., Garcia, A.D., Sofroniew, M.V. & Van Der Kooy, D. The ablation of glial fibrillary acidic protein-positive cell from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur. J. Neurosci.18, 76–84 (2003). Article Google Scholar
Rietze, R.L. et al. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature412, 736–739 (2001). ArticleCAS Google Scholar
Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science289, 1754–1757 (2000). ArticleCAS Google Scholar
Bush, T.G. et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell93, 189–201 (1998). ArticleCAS Google Scholar
Bush, T.G. et al. Leukocyte infiltration, neuronal degeneration and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron23, 297–308 (1999). ArticleCAS Google Scholar
Seki, T. Expression patterns of immature neuronal markers PSA-NCAM, CRMP-4 and NeuroD in the hippocampus of young adult and aged rodents. J. Neurosci. Res.70, 327–334 (2002). ArticleCAS Google Scholar
Gleeson, J.G., Lin, P.T., Flanagan, L.A. & Walsh, C.A. Doublecortin is a microtuble-associated protein and is expressed by migrating neurons. Neuron23, 257–271 (1999). ArticleCAS Google Scholar
Bai, J. et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat. Neurosci.6, 1277–1283 (2003). ArticleCAS Google Scholar
Rao, M.S. & Shetty, A.K. Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur. J. Neurosci.19, 234–246 (2004). Article Google Scholar
Sauer, B. Site-specific recombination: developments and applications. Curr. Opin. Biotechol.5, 521–527 (1994). ArticleCAS Google Scholar
Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet.21, 70–71 (1999). ArticleCAS Google Scholar
Novak, A., Guo, C., Yang, W., Nagy, A. & Lobe, C. G, Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis28, 147–155 (2000). ArticleCAS Google Scholar
Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science255, 1707–1710 (1992). ArticleCAS Google Scholar
Morshead, C.M. et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron13, 1071–1082 (1994). ArticleCAS Google Scholar
Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple sepctral variants of GFP. Neuron28, 41–51 (2000). ArticleCAS Google Scholar
Borrelli, E., Heyman, R.A., Arias, C., Sawchenko, P.E. & Evans, R.M. Transgenic mice with inducible dwarfism. Nature339, 538–541 (1989). ArticleCAS Google Scholar
Mathis, C., Hindelang, C., LeMeur, M. & Borrelli, E. A trangenic mouse model for inducible and reversible dysmyelination. J. Neurosci.20, 7698–7705 (2000). ArticleCAS Google Scholar
Zinyk, D.L., Mercer, E.H., Harris, E., Anderson, D.J. & Joyner, A.L. Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Curr. Biol.8, 665–668 (1998). ArticleCAS Google Scholar
Malatesta, P. et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron37, 751–764 (2003). ArticleCAS Google Scholar
Buniatian, G. et al. The immunoreactivity of glial fibrillary acidic protein in mesangial cells and podocytes of the glomeruli of rat kidney in vivo and in culture. Biol. Cell.90, 53–56 (1998). ArticleCAS Google Scholar
Neubauer, K., Knittel, T., Aurisch, S., Fellmer, P. & Ramadori, G. Glial fibrillary acidic protein–a cell type specific marker for Ito cells in vivo and in vitro. J. Hepatol.24, 719–730 (1996). ArticleCAS Google Scholar
Eliasson, C. et al. Intermediate filament protein partnership in astrocytes. J. Biol. Chem.274, 23996–23406 (1999). ArticleCAS Google Scholar
Frisen, J., Johansson, C.B., Torok, C., Risling, M. & Lendahl, U. Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J. Cell Biol.131, 453–464 (1995). ArticleCAS Google Scholar
Lendahl, U., Zimmerman, L.B. & McKay, R.D. CNS stem cells express a new class of intermediate filament protein. Cell60, 585–595 (1990). ArticleCAS Google Scholar
Gomi, H. et al. Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron14, 29–41 (1995). ArticleCAS Google Scholar
Pekny, M. et al. Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J.14, 1590–1598 (1995). ArticleCAS Google Scholar
Shors, T.J. et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature410, 372–376 (2001). ArticleCAS Google Scholar
Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science301, 805–809 (2003). ArticleCAS Google Scholar
Mignone, J.L., Kukekov, V., Chiang, A.S., Steindler, D. & Enikolopov, G. Neural stem and progenitor cells in nestin-GFP transgenic mice. J. Comp. Neurol.469, 311–324 (2004). ArticleCAS Google Scholar
Noctor, S.C., Flint, A.C., Weissman, T.A., Dammerman, R.S. & Kriegstein, A.R. Neurons derived from radial glial cells establish radial units in neocortex. Nature409, 714–720 (2001). ArticleCAS Google Scholar
Anthony, T.E., Klein, C., Fishell, G. & Heintz, N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron41, 881–889 (2004). ArticleCAS Google Scholar
Schmechel, D.E. & Rakic, P. A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat. Embryol. (Berl.)156, 115–152 (1979). ArticleCAS Google Scholar
Levitt, P. & Rakic, P. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J. Comp. Neurol.193, 815–840 (1980). ArticleCAS Google Scholar
Rickmann, M., Amaral, D.G. & Cowan, W.M. Organization of radial glial cells during the development of the rat dentate gyrus. J. Comp. Neurol.264, 449–479 (1987). ArticleCAS Google Scholar
Johnson, W.B. et al. Indicator expression directed by regulatory sequences of the glial fibrillary acidic protein (GFAP) gene: in vitro comparison of distinct GFAP-lacZ transgenes. Glia13, 174–184 (1995). ArticleCAS Google Scholar
Balzarini, J. et al. Superior cytostatic activity of the ganciclovir elaidic acid ester due to the prolonged intracellular retention of ganciclovir anabolites in herpes simplex virus type 1 thymidine kinase gene-transfected tumor cells. Gene Ther.5, 419–426 (1998). ArticleCAS Google Scholar
Gundersen, H.J.G. et al. Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Acta Path. Microbiol. Immunol. Scand.96, 379–394 (1988). ArticleCAS Google Scholar