Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens (original) (raw)

References

  1. Schultz, W., Dayan, P. & Montague, P.R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).
    Article CAS Google Scholar
  2. Bayer, H.M. & Glimcher, P.W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47, 129–141 (2005).
    Article CAS Google Scholar
  3. Pan, W.X., Schmidt, R., Wickens, J.R. & Hyland, B.I. Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network. J. Neurosci. 25, 6235–6242 (2005).
    Article CAS Google Scholar
  4. Sutton, R.S. & Barto, A.G. Reinforcement Learning (MIT Press, Cambridge, Massachusetts, 1998).
    Google Scholar
  5. Montague, P.R., Hyman, S.E. & Cohen, J.D. Computational roles for dopamine in behavioural control. Nature 431, 760–767 (2004).
    Article CAS Google Scholar
  6. Mirenowicz, J. & Schultz, W. Importance of unpredictability for reward responses in primate dopamine neurons. J. Neurophysiol. 72, 1024–1027 (1994).
    Article CAS Google Scholar
  7. Fiorillo, C.D., Tobler, P.N. & Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898–1902 (2003).
    Article CAS Google Scholar
  8. Morris, G., Nevet, A., Arkadir, D., Vaadia, E. & Bergman, H. Midbrain dopamine neurons encode decisions for future action. Nat. Neurosci. 9, 1057–1063 (2006).
    Article CAS Google Scholar
  9. Mogenson, G.J., Jones, D.L. & Yim, C.Y. From motivation to action: functional interface between the limbic system and the motor system. Prog. Neurobiol. 14, 69–97 (1980).
    Article CAS Google Scholar
  10. Day, J.J., Wheeler, R.A., Roitman, M.F. & Carelli, R.M. Nucleus accumbens neurons encode Pavlovian approach behaviors: evidence from an autoshaping paradigm. Eur. J. Neurosci. 23, 1341–1351 (2006).
    Article Google Scholar
  11. Roitman, M.F., Wheeler, R.A. & Carelli, R.M. Nucleus accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. Neuron 45, 587–597 (2005).
    Article CAS Google Scholar
  12. Yun, I.A., Wakabayashi, K.T., Fields, H.L. & Nicola, S.M. The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues. J. Neurosci. 24, 2923–2933 (2004).
    Article CAS Google Scholar
  13. Di Ciano, P., Cardinal, R.N., Cowell, R.A., Little, S.J. & Everitt, B.J. Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of pavlovian approach behavior. J. Neurosci. 21, 9471–9477 (2001).
    Article CAS Google Scholar
  14. Di Chiara, G. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav. Brain Res. 137, 75–114 (2002).
    Article CAS Google Scholar
  15. Dalley, J.W. et al. Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 102, 6189–6194 (2005).
    Article CAS Google Scholar
  16. Zhang, H. & Sulzer, D. Frequency-dependent modulation of dopamine release by nicotine. Nat. Neurosci. 7, 581–582 (2004).
    Article CAS Google Scholar
  17. Cragg, S.J. Variable dopamine release probability and short-term plasticity between functional domains of the primate striatum. J. Neurosci. 23, 4378–4385 (2003).
    Article CAS Google Scholar
  18. Cragg, S.J. Meaningful silences: how dopamine listens to the ACh pause. Trends Neurosci. 29, 125–131 (2006).
    Article CAS Google Scholar
  19. Montague, P.R. et al. Dynamic gain control of dopamine delivery in freely moving animals. J. Neurosci. 24, 1754–1759 (2004).
    Article CAS Google Scholar
  20. Garris, P.A. et al. Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 398, 67–69 (1999).
    Article CAS Google Scholar
  21. Bassareo, V. & Di Chiara, G. Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J. Neurosci. 17, 851–861 (1997).
    Article CAS Google Scholar
  22. Waelti, P., Dickinson, A. & Schultz, W. Dopamine responses comply with basic assumptions of formal learning theory. Nature 412, 43–48 (2001).
    Article CAS Google Scholar
  23. Ungless, M.A., Magill, P.J. & Bolam, J.P. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303, 2040–2042 (2004).
    Article CAS Google Scholar
  24. Margolis, E.B., Lock, H., Hjelmstad, G.O. & Fields, H.L. The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 15, 907–924 (2006).
    Article Google Scholar
  25. Phillips, P.E., Stuber, G.D., Heien, M.L., Wightman, R.M. & Carelli, R.M. Subsecond dopamine release promotes cocaine seeking. Nature 422, 614–618 (2003).
    Article CAS Google Scholar
  26. Heien, M.L., Johnson, M.A. & Wightman, R.M. Resolving neurotransmitters detected by fast-scan cyclic voltammetry. Anal. Chem. 76, 5697–5704 (2004).
    Article CAS Google Scholar
  27. Heien, M.L. et al. Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc. Natl. Acad. Sci. USA 102, 10023–10028 (2005).
    Article CAS Google Scholar
  28. Everitt, B.J. & Robbins, T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).
    Article CAS Google Scholar
  29. Robbins, T.W. & Everitt, B.J. Limbic-striatal memory systems and drug addiction. Neurobiol. Learn. Mem. 78, 625–636 (2002).
    Article CAS Google Scholar
  30. Uslaner, J.M., Acerbo, M.J., Jones, S.A. & Robinson, T.E. The attribution of incentive salience to a stimulus that signals an intravenous injection of cocaine. Behav. Brain Res. 169, 320–324 (2006).
    Article CAS Google Scholar
  31. Cardinal, R.N. et al. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behav. Neurosci. 116, 553–567 (2002).
    Article Google Scholar
  32. Parkinson, J.A., Olmstead, M.C., Burns, L.H., Robbins, T.W. & Everitt, B.J. Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by d-amphetamine. J. Neurosci. 19, 2401–2411 (1999).
    Article CAS Google Scholar
  33. Pan, W.X. & Hyland, B.I. Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J. Neurosci. 25, 4725–4732 (2005).
    Article CAS Google Scholar
  34. Dommett, E. et al. How visual stimuli activate dopaminergic neurons at short latency. Science 307, 1476–1479 (2005).
    Article CAS Google Scholar
  35. Kakade, S. & Dayan, P. Dopamine: generalization and bonuses. Neural Netw. 15, 549–559 (2002).
    Article Google Scholar
  36. Parkinson, J.A. et al. Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function. Behav. Brain Res. 137, 149–163 (2002).
    Article CAS Google Scholar
  37. Ikemoto, S. & Panksepp, J. The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res. Brain Res. Rev. 31, 6–41 (1999).
    Article CAS Google Scholar
  38. Roitman, M.F., Stuber, G.D., Phillips, P.E., Wightman, R.M. & Carelli, R.M. Dopamine operates as a subsecond modulator of food seeking. J. Neurosci. 24, 1265–1271 (2004).
    Article CAS Google Scholar
  39. Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).
    Article CAS Google Scholar
  40. Berridge, K.C. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology (Berl.) 191, 391–431 (2006).
    Google Scholar
  41. Berridge, K.C. & Robinson, T.E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev. 28, 309–369 (1998).
    Article CAS Google Scholar
  42. Setlow, B., Schoenbaum, G. & Gallagher, M. Neural encoding in ventral striatum during olfactory discrimination learning. Neuron 38, 625–636 (2003).
    Article CAS Google Scholar
  43. Cepeda, C. & Levine, M.S. Dopamine and _N_-methyl-D-aspartate receptor interactions in the neostriatum. Dev. Neurosci. 20, 1–18 (1998).
    Article CAS Google Scholar
  44. Kerr, J.N. & Wickens, J.R. Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J. Neurophysiol. 85, 117–124 (2001).
    Article CAS Google Scholar
  45. Eyny, Y.S. & Horvitz, J.C. Opposing roles of D1 and D2 receptors in appetitive conditioning. J. Neurosci. 23, 1584–1587 (2003).
    Article CAS Google Scholar
  46. Watson, C.J., Venton, B.J. & Kennedy, R.T. In vivo measurements of neurotransmitters by microdialysis sampling. Anal. Chem. 78, 1391–1399 (2006).
    Article Google Scholar
  47. Richfield, E.K., Penney, J.B. & Young, A.B. Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 30, 767–777 (1989).
    Article CAS Google Scholar
  48. Greengard, P. The neurobiology of slow synaptic transmission. Science 294, 1024–1030 (2001).
    Article CAS Google Scholar
  49. Phillips, P.E., Robinson, D.L., Stuber, G.D., Carelli, R.M. & Wightman, R.M. Real-time measurements of phasic changes in extracellular dopamine concentration in freely moving rats by fast-scan cyclic voltammetry. Methods Mol. Med. 79, 443–464 (2003).
    CAS PubMed Google Scholar
  50. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Elsevier, New York, 2005).
    Google Scholar

Download references