Pan, W.X., Schmidt, R., Wickens, J.R. & Hyland, B.I. Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network. J. Neurosci.25, 6235–6242 (2005). ArticleCAS Google Scholar
Montague, P.R., Hyman, S.E. & Cohen, J.D. Computational roles for dopamine in behavioural control. Nature431, 760–767 (2004). ArticleCAS Google Scholar
Mirenowicz, J. & Schultz, W. Importance of unpredictability for reward responses in primate dopamine neurons. J. Neurophysiol.72, 1024–1027 (1994). ArticleCAS Google Scholar
Fiorillo, C.D., Tobler, P.N. & Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science299, 1898–1902 (2003). ArticleCAS Google Scholar
Morris, G., Nevet, A., Arkadir, D., Vaadia, E. & Bergman, H. Midbrain dopamine neurons encode decisions for future action. Nat. Neurosci.9, 1057–1063 (2006). ArticleCAS Google Scholar
Mogenson, G.J., Jones, D.L. & Yim, C.Y. From motivation to action: functional interface between the limbic system and the motor system. Prog. Neurobiol.14, 69–97 (1980). ArticleCAS Google Scholar
Day, J.J., Wheeler, R.A., Roitman, M.F. & Carelli, R.M. Nucleus accumbens neurons encode Pavlovian approach behaviors: evidence from an autoshaping paradigm. Eur. J. Neurosci.23, 1341–1351 (2006). Article Google Scholar
Roitman, M.F., Wheeler, R.A. & Carelli, R.M. Nucleus accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. Neuron45, 587–597 (2005). ArticleCAS Google Scholar
Yun, I.A., Wakabayashi, K.T., Fields, H.L. & Nicola, S.M. The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues. J. Neurosci.24, 2923–2933 (2004). ArticleCAS Google Scholar
Di Ciano, P., Cardinal, R.N., Cowell, R.A., Little, S.J. & Everitt, B.J. Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of pavlovian approach behavior. J. Neurosci.21, 9471–9477 (2001). ArticleCAS Google Scholar
Di Chiara, G. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav. Brain Res.137, 75–114 (2002). ArticleCAS Google Scholar
Dalley, J.W. et al. Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens. Proc. Natl. Acad. Sci. USA102, 6189–6194 (2005). ArticleCAS Google Scholar
Zhang, H. & Sulzer, D. Frequency-dependent modulation of dopamine release by nicotine. Nat. Neurosci.7, 581–582 (2004). ArticleCAS Google Scholar
Cragg, S.J. Variable dopamine release probability and short-term plasticity between functional domains of the primate striatum. J. Neurosci.23, 4378–4385 (2003). ArticleCAS Google Scholar
Cragg, S.J. Meaningful silences: how dopamine listens to the ACh pause. Trends Neurosci.29, 125–131 (2006). ArticleCAS Google Scholar
Montague, P.R. et al. Dynamic gain control of dopamine delivery in freely moving animals. J. Neurosci.24, 1754–1759 (2004). ArticleCAS Google Scholar
Garris, P.A. et al. Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature398, 67–69 (1999). ArticleCAS Google Scholar
Bassareo, V. & Di Chiara, G. Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J. Neurosci.17, 851–861 (1997). ArticleCAS Google Scholar
Waelti, P., Dickinson, A. & Schultz, W. Dopamine responses comply with basic assumptions of formal learning theory. Nature412, 43–48 (2001). ArticleCAS Google Scholar
Ungless, M.A., Magill, P.J. & Bolam, J.P. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science303, 2040–2042 (2004). ArticleCAS Google Scholar
Margolis, E.B., Lock, H., Hjelmstad, G.O. & Fields, H.L. The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol15, 907–924 (2006). Article Google Scholar
Heien, M.L., Johnson, M.A. & Wightman, R.M. Resolving neurotransmitters detected by fast-scan cyclic voltammetry. Anal. Chem.76, 5697–5704 (2004). ArticleCAS Google Scholar
Heien, M.L. et al. Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc. Natl. Acad. Sci. USA102, 10023–10028 (2005). ArticleCAS Google Scholar
Everitt, B.J. & Robbins, T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci.8, 1481–1489 (2005). ArticleCAS Google Scholar
Robbins, T.W. & Everitt, B.J. Limbic-striatal memory systems and drug addiction. Neurobiol. Learn. Mem.78, 625–636 (2002). ArticleCAS Google Scholar
Uslaner, J.M., Acerbo, M.J., Jones, S.A. & Robinson, T.E. The attribution of incentive salience to a stimulus that signals an intravenous injection of cocaine. Behav. Brain Res.169, 320–324 (2006). ArticleCAS Google Scholar
Cardinal, R.N. et al. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behav. Neurosci.116, 553–567 (2002). Article Google Scholar
Parkinson, J.A., Olmstead, M.C., Burns, L.H., Robbins, T.W. & Everitt, B.J. Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by d-amphetamine. J. Neurosci.19, 2401–2411 (1999). ArticleCAS Google Scholar
Pan, W.X. & Hyland, B.I. Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J. Neurosci.25, 4725–4732 (2005). ArticleCAS Google Scholar
Dommett, E. et al. How visual stimuli activate dopaminergic neurons at short latency. Science307, 1476–1479 (2005). ArticleCAS Google Scholar
Kakade, S. & Dayan, P. Dopamine: generalization and bonuses. Neural Netw.15, 549–559 (2002). Article Google Scholar
Parkinson, J.A. et al. Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function. Behav. Brain Res.137, 149–163 (2002). ArticleCAS Google Scholar
Ikemoto, S. & Panksepp, J. The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res. Brain Res. Rev.31, 6–41 (1999). ArticleCAS Google Scholar
Roitman, M.F., Stuber, G.D., Phillips, P.E., Wightman, R.M. & Carelli, R.M. Dopamine operates as a subsecond modulator of food seeking. J. Neurosci.24, 1265–1271 (2004). ArticleCAS Google Scholar
Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci.5, 483–494 (2004). ArticleCAS Google Scholar
Berridge, K.C. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology (Berl.)191, 391–431 (2006). Google Scholar
Berridge, K.C. & Robinson, T.E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev.28, 309–369 (1998). ArticleCAS Google Scholar
Setlow, B., Schoenbaum, G. & Gallagher, M. Neural encoding in ventral striatum during olfactory discrimination learning. Neuron38, 625–636 (2003). ArticleCAS Google Scholar
Cepeda, C. & Levine, M.S. Dopamine and _N_-methyl-D-aspartate receptor interactions in the neostriatum. Dev. Neurosci.20, 1–18 (1998). ArticleCAS Google Scholar
Kerr, J.N. & Wickens, J.R. Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J. Neurophysiol.85, 117–124 (2001). ArticleCAS Google Scholar
Eyny, Y.S. & Horvitz, J.C. Opposing roles of D1 and D2 receptors in appetitive conditioning. J. Neurosci.23, 1584–1587 (2003). ArticleCAS Google Scholar
Watson, C.J., Venton, B.J. & Kennedy, R.T. In vivo measurements of neurotransmitters by microdialysis sampling. Anal. Chem.78, 1391–1399 (2006). Article Google Scholar
Richfield, E.K., Penney, J.B. & Young, A.B. Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience30, 767–777 (1989). ArticleCAS Google Scholar
Greengard, P. The neurobiology of slow synaptic transmission. Science294, 1024–1030 (2001). ArticleCAS Google Scholar
Phillips, P.E., Robinson, D.L., Stuber, G.D., Carelli, R.M. & Wightman, R.M. Real-time measurements of phasic changes in extracellular dopamine concentration in freely moving rats by fast-scan cyclic voltammetry. Methods Mol. Med.79, 443–464 (2003). CASPubMed Google Scholar
Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Elsevier, New York, 2005). Google Scholar