Shaw, P.J., Cirelli, C., Greenspan, R.J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science287, 1834–1837 (2000). ArticleCASPubMed Google Scholar
Andretic, R., van Swinderen, B. & Greenspan, R.J. Dopaminergic modulation of arousal in Drosophila. Curr. Biol.15, 1165–1175 (2005). ArticleCASPubMed Google Scholar
Koh, K., Evans, J.M., Hendricks, J.C. & Sehgal, A. A Drosophila model for age-associated changes in sleep:wake cycles. Proc. Natl. Acad. Sci. USA103, 13843–13847 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kramer, A. et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science294, 2511–2515 (2001). ArticleCASPubMed Google Scholar
Kushikata, T., Fang, J., Chen, Z., Wang, Y. & Krueger, J.M. Epidermal growth factor enhances spontaneous sleep in rabbits. Am. J. Physiol.275, R509–R514 (1998). CASPubMed Google Scholar
Urban, S., Lee, J.R. & Freeman, M. A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands. EMBO J.21, 4277–4286 (2002). ArticleCASPubMedPubMed Central Google Scholar
Shilo, B.Z. Signaling by the Drosophila epidermal growth factor receptor pathway during development. Exp. Cell Res.284, 140–149 (2003). ArticleCASPubMed Google Scholar
Shilo, B.Z. Regulating the dynamics of EGF receptor signaling in space and time. Development132, 4017–4027 (2005). ArticleCASPubMed Google Scholar
Guichard, A. et al. Rhomboid and Star interact synergistically to promote EGFR/MAPK signaling during Drosophila wing vein development. Development126, 2663–2676 (1999). CASPubMed Google Scholar
Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development118, 401–415 (1993). CASPubMed Google Scholar
Sturtevant, M.A., Roark, M. & Bier, E. The Drosophila rhomboid gene mediates the localized formation of wing veins and interacts genetically with components of the EGFR signaling pathway. Genes Dev.7, 961–973 (1993). ArticleCASPubMed Google Scholar
Schweitzer, R., Shaharabany, M., Seger, R. & Shilo, B.Z. Secreted Spitz triggers the DER signaling pathway and is a limiting component in embryonic ventral ectoderm determination. Genes Dev.9, 1518–1529 (1995). ArticleCASPubMed Google Scholar
Freeman, M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell87, 651–660 (1996). ArticleCASPubMed Google Scholar
Urban, S., Lee, J.R. & Freeman, M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell107, 173–182 (2001). ArticleCASPubMed Google Scholar
Guichard, A., Srinivasan, S., Zimm, G. & Bier, E. A screen for dominant mutations applied to components in the Drosophila EGFR pathway. Proc. Natl. Acad. Sci. USA99, 3752–3757 (2002). ArticleCASPubMedPubMed Central Google Scholar
McGuire, S.E., Le, P.T., Osborn, A.J., Matsumoto, K. & Davis, R.L. Spatiotemporal rescue of memory dysfunction in Drosophila. Science302, 1765–1768 (2003). ArticleCASPubMed Google Scholar
Sturtevant, M.A., O'Neill, J.W. & Bier, E. Down-regulation of Drosophila EGFR mRNA levels following hyperactivated receptor signaling. Development120, 2593–2600 (1994). CASPubMed Google Scholar
Welsh, J.B., Gill, G.N., Rosenfeld, M.G. & Wells, A. A negative feedback loop attenuates EGF-induced morphological changes. J. Cell Biol.114, 533–543 (1991). ArticleCASPubMed Google Scholar
Wiley, H.S. et al. The role of tyrosine kinase activity in endocytosis, compartmentation, and down-regulation of the epidermal growth factor receptor. J. Biol. Chem.266, 11083–11094 (1991). CASPubMed Google Scholar
Ng, D.C. & Bogoyevitch, M.A. The mechanism of heat shock activation of ERK mitogen-activated protein kinases in the interleukin 3–dependent ProB cell line BaF3. J. Biol. Chem.275, 40856–40866 (2000). ArticleCASPubMed Google Scholar
Williams, J.A., Su, H.S., Bernards, A., Field, J. & Sehgal, A. A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK. Science293, 2251–2256 (2001). ArticleCASPubMed Google Scholar
Schejter, E.D., Segal, D., Glazer, L. & Shilo, B.Z. Alternative 5′ exons and tissue-specific expression of the Drosophila EGF receptor homolog transcripts. Cell46, 1091–1101 (1986). ArticleCASPubMed Google Scholar
Botella, J.A. et al. Deregulation of the Egfr/Ras signaling pathway induces age-related brain degeneration in the Drosophila mutant vap. Mol. Biol. Cell14, 241–250 (2003). ArticleCASPubMedPubMed Central Google Scholar
Joiner, W.J., Crocker, A., White, B.H. & Sehgal, A. Sleep in Drosophila is regulated by adult mushroom bodies. Nature441, 757–760 (2006). ArticleCASPubMed Google Scholar
Pitman, J.L., McGill, J.J., Keegan, K.P. & Allada, R. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature441, 753–756 (2006). ArticleCASPubMed Google Scholar
Rajashekhar, K.P. & Singh, R.N. Neuroarchitecture of the tritocerebrum of Drosophila melanogaster. J. Comp. Neurol.349, 633–645 (1994). ArticleCASPubMed Google Scholar
Siegmund, T. & Korge, G. Innervation of the ring gland of Drosophila melanogaster. J. Comp. Neurol.431, 481–491 (2001). ArticleCASPubMed Google Scholar
de Velasco, B. et al. Specification and development of the pars intercerebralis and pars lateralis, neurocndocrine command centers in the Drosophila brain. Dev. Biol.302, 309–323 (2007). ArticleCASPubMed Google Scholar
Veelaert, D., Schoofs, L. & De Loof, A. Peptidergic control of the corpus cardiacum-corpora allata complex of locusts. Int. Rev. Cytol.182, 249–302 (1998). ArticleCASPubMed Google Scholar
De Velasco, B., Shen, J., Go, S. & Hartenstein, V. Embryonic development of the Drosophila corpus cardiacum, a neuroendocrine gland with similarity to the vertebrate pituitary, is controlled by sine oculis and glass. Dev. Biol.274, 280–294 (2004). ArticleCASPubMed Google Scholar
Kilduff, T.S. & Peyron, C. The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci.23, 359–365 (2000). ArticleCASPubMed Google Scholar
Saper, C.B., Scammell, T.E. & Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature437, 1257–1263 (2005). ArticleCASPubMed Google Scholar
Mignot, E., Taheri, S. & Nishino, S. Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. Nat. Neurosci.5 Suppl, 1071–1075 (2002). ArticleCASPubMed Google Scholar
Saper, C.B., Chou, T.C. & Scammell, T.E. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci.24, 726–731 (2001). ArticleCASPubMed Google Scholar
Yarden, Y. & Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol.2, 127–137 (2001). ArticleCASPubMed Google Scholar
Garcia, R.A., Vasudevan, K. & Buonanno, A. The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc. Natl. Acad. Sci. USA97, 3596–3601 (2000). ArticleCASPubMedPubMed Central Google Scholar
Huang, Y.Z. et al. Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron26, 443–455 (2000). ArticleCASPubMed Google Scholar
Suzuki, T., Okumura-Noji, K. & Nishida, E. ERK2-type mitogen-activated protein kinase (MAPK) and its substrates in postsynaptic density fractions from the rat brain. Neurosci. Res.22, 277–285 (1995). ArticleCASPubMed Google Scholar
Suzuki, T., Mitake, S. & Murata, S. Presence of upstream and downstream components of a mitogen-activated protein kinase pathway in the PSD of the rat forebrain. Brain Res.840, 36–44 (1999). ArticleCASPubMed Google Scholar
Humbert, P., Russell, S. & Richardson, H. Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. Bioessays25, 542–553 (2003). ArticleCASPubMed Google Scholar
Hoeffer, C.A., Sanyal, S. & Ramaswami, M. Acute induction of conserved synaptic signaling pathways in Drosophila melanogaster. J. Neurosci.23, 6362–6372 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sweatt, J.D. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr. Opin. Neurobiol.14, 311–317 (2004). ArticleCASPubMed Google Scholar
Schrader, L.A. et al. ERK/MAPK regulates the Kv4.2 potassium channel by direct phosphorylation of the pore-forming subunit. Am. J. Physiol. Cell Physiol.290, C852–C861 (2006). ArticleCASPubMed Google Scholar
Shaw, P.J., Tononi, G., Greenspan, R.J. & Robinson, D.F. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature417, 287–291 (2002). ArticleCASPubMed Google Scholar
Sokal, R.R. & Rohlf, F.J. Biometry: the Principles and Practice of Statistics in Biological Research (Freeman, New York, 1995). Google Scholar
Rosato, E. & Kyriacou, C.P. Analysis of locomotor activity rhythms in Drosophila. Nat. Protoc.1, 559–568 (2006). ArticlePubMed Google Scholar
Roenneberg, T. & Taylor, W. Automated recordings of bioluminescence with special reference to the analysis of circadian rhythms. Methods Enzymol.305, 104–119 (2000). ArticleCASPubMed Google Scholar
Basyuk, E., Bertrand, E. & Journot, L. Alkaline fixation drastically improves the signal of in situ hybridization. Nucleic Acids Res.28, E46 (2000). ArticleCASPubMedPubMed Central Google Scholar