Transcriptional repression coordinates the temporal switch from motor to serotonergic neurogenesis (original) (raw)
References
Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet.1, 20–29 (2000). CASPubMed Google Scholar
Pearson, B.J. & Doe, C.Q. Specification of temporal identity in the developing nervous system. Annu. Rev. Cell Dev. Biol.20, 619–647 (2004). CASPubMed Google Scholar
Cordes, S.P. Molecular genetics of cranial nerve development in mouse. Nat. Rev. Neurosci.2, 611–623 (2001). CASPubMed Google Scholar
Jacob, J., Tiveron, M.C., Brunet, J.F. & Guthrie, S. Role of the target in the pathfinding of facial visceral motor axons. Mol. Cell. Neurosci.16, 14–26 (2000). CASPubMed Google Scholar
Jacobs, B.L. & Azmitia, E.C. Structure and function of the brain serotonin system. Physiol. Rev.72, 165–229 (1992). CASPubMed Google Scholar
Gaspar, P., Cases, O. & Maroteaux, L. The developmental role of serotonin: news from mouse molecular genetics. Nat. Rev. Neurosci.4, 1002–1012 (2003). CASPubMed Google Scholar
Paterson, D.S. et al. Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. J. Am. Med. Assoc.296, 2124–2132 (2006). CAS Google Scholar
Pierce, E.T. Time of origin of neurons in the brain stem of the mouse. Prog. Brain Res.40, 53–65 (1973). CASPubMed Google Scholar
Covell, D.A., Jr. & Noden, D.M. Embryonic development of the chick primary trigeminal sensory-motor complex. J. Comp. Neurol.286, 488–503 (1989). PubMed Google Scholar
Pattyn, A. et al. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev.17, 729–737 (2003). CASPubMedPubMed Central Google Scholar
Sako, H., Kojima, T. & Okado, N. Immunohistochemical study on the development of serotoninergic neurons in the chick: I. Distribution of cell bodies and fibers in the brain. J. Comp. Neurol.253, 61–78 (1986). CASPubMed Google Scholar
Ye, W., Shimamura, K., Rubenstein, J.L., Hynes, M.A. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell93, 755–766 (1998). CASPubMed Google Scholar
Briscoe, J. et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signaling. Nature398, 622–627 (1999). CASPubMed Google Scholar
Pattyn, A., Vallstedt, A., Dias, J.M., Sander, M. & Ericson, J. Complementary roles for Nkx6 and Nkx2 class proteins in the establishment of motoneuron identity in the hindbrain. Development130, 4149–4159 (2003). CASPubMed Google Scholar
Craven, S.E. et al. Gata2 specifies serotonergic neurons downstream of sonic hedgehog. Development131, 1165–1173 (2004). CASPubMed Google Scholar
Pattyn, A., Hirsch, M., Goridis, C. & Brunet, J.F. Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development127, 1349–1358 (2000). CASPubMed Google Scholar
Dubreuil, V., Hirsch, M.R., Pattyn, A., Brunet, J.F. & Goridis, C. The Phox2b transcription factor coordinately regulates neuronal cell cycle exit and identity. Development127, 5191–5201 (2000). CASPubMed Google Scholar
Pattyn, A. et al. Ascl1/Mash1 is required for the development of central serotonergic neurons. Nat. Neurosci.7, 589–595 (2004). CASPubMed Google Scholar
Tiveron, M.C., Pattyn, A., Hirsch, M.R. & Brunet, J.F. Role of Phox2b and Mash1 in the generation of the vestibular efferent nucleus. Dev. Biol.260, 46–57 (2003). CASPubMed Google Scholar
van Doorninck, J.H. et al. GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J. Neurosci.19, RC12 (1999). CASPubMed Google Scholar
Hendricks, T., Francis, N., Fyodorov, D. & Deneris, E.S. The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J. Neurosci.19, 10348–10356 (1999). CASPubMedPubMed Central Google Scholar
Hendricks, T.J. et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron37, 233–247 (2003). ArticleCASPubMed Google Scholar
Ding, Y.Q. et al. Lmx1b is essential for the development of serotonergic neurons. Nat. Neurosci.6, 933–938 (2003). CASPubMed Google Scholar
Cheng, L. et al. Lmx1b, Pet-1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J. Neurosci.23, 9961–9967 (2003). CASPubMedPubMed Central Google Scholar
Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.F. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development124, 4065–4075 (1997). CASPubMed Google Scholar
Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.F. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature399, 366–370 (1999). CASPubMed Google Scholar
Samad, O.A. et al. Integration of anteroposterior and dorsoventral regulation of Phox2b transcription in cranial motoneuron progenitors by homeodomain proteins. Development131, 4071–4083 (2004). CASPubMed Google Scholar
Hallonet, M. et al. Maintenance of the specification of the anterior definitive endoderm and forebrain depends on the axial mesendoderm: a study using HNF3beta/Foxa2 conditional mutants. Dev. Biol.243, 20–33 (2002). CASPubMed Google Scholar
Vallet, V., Antoine, B., Chafey, P., Vandewalle, A. & Kahn, A. Overproduction of a truncated hepatocyte nuclear factor 3 protein inhibits expression of liver-specific genes in hepatoma cells. Mol. Cell. Biol.15, 5453–5460 (1995). CASPubMedPubMed Central Google Scholar
Wallace, J.A. An immunocytochemical study of the development of central serotoninergic neurons in the chick embryo. J. Comp. Neurol.236, 443–453 (1985). CASPubMed Google Scholar
Ruiz i Altaba, A., Jessell, T.M. & Roelink, H. Restrictions to floor plate induction by hedgehog and winged-helix genes in the neural tube of frog embryos. Mol. Cell. Neurosci.6, 106–121 (1995). CASPubMed Google Scholar
Jeong, Y. & Epstein, D.J. Distinct regulators of Shh transcription in the floor plate and notochord indicate separate origins for these tissues in the mouse node. Development130, 3891–3902 (2003). CASPubMed Google Scholar
Hynes, M. et al. Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1. Neuron19, 15–26 (1997). CASPubMed Google Scholar
Isaka, F. et al. Ectopic expression of the bHLH gene Math1 disturbs neural development. Eur. J. Neurosci.11, 2582–2588 (1999). CASPubMed Google Scholar
Isshiki, T., Pearson, B., Holbrook, S. & Doe, C.Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell106, 511–521 (2001). CASPubMed Google Scholar
Hanashima, C., Li, S.C., Shen, L., Lai, E. & Fishell, G. Foxg1 suppresses early cortical cell fate. Science303, 56–59 (2004). CASPubMed Google Scholar
Rowitch, D.H. Glial specification in the vertebrate neural tube. Nat. Rev. Neurosci.5, 409–419 (2004). CASPubMed Google Scholar
Qi, Y. et al. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development128, 2723–2733 (2001). CASPubMed Google Scholar
Zhou, Q., Choi, G. & Anderson, D.J. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron31, 791–807 (2001). CASPubMed Google Scholar
Ang, S.L. & Rossant, J. HNF-3 beta is essential for node and notochord formation in mouse development. Cell78, 561–574 (1994). CASPubMed Google Scholar
Weinstein, D.C. et al. The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell78, 575–588 (1994). CASPubMed Google Scholar
Placzek, M. & Briscoe, J. The floor plate: multiple cells, multiple signals. Nat. Rev. Neurosci.6, 230–240 (2005). CASPubMed Google Scholar
Muhle, R., Trentacoste, S.V. & Rapin, I. The genetics of autism. Pediatrics113, e472–e486 (2004). PubMed Google Scholar
Amiel, J. et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat. Genet.33, 459–461 (2003). CASPubMed Google Scholar
Rand, C.M., Berry-Kravis, E.M., Zhou, L., Fan, W. & Weese-Mayer, D.E. Sudden infant death syndrome: rare mutation in the serotonin system FEV gene. Pediatr Res.62, 180–182 (2007). CASPubMed Google Scholar
Stamataki, D., Ulloa, F., Tsoni, S.V., Mynett, A. & Briscoe, J. A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube. Genes Dev.19, 626–641 (2005). CASPubMedPubMed Central Google Scholar
Studer, M., Lumsden, A., Ariza-McNaughton, L., Bradley, A. & Krumlauf, R. Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature384, 630–634 (1996). CASPubMed Google Scholar
Dassule, H.R., Lewis, P., Bei, M., Maas, R. & McMahon, A.P. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development127, 4775–4785 (2000). CASPubMed Google Scholar
Danielian, P.S., Muccino, D., Rowitch, D.H., Michael, S.K. & McMahon, A.P. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol.8, 1323–1326 (1998). CASPubMed Google Scholar
Ericson, J., Morton, S., Kawakami, A., Roelink, H. & Jessell, T.M. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell87, 661–673 (1996). CASPubMed Google Scholar