Transcriptional repression coordinates the temporal switch from motor to serotonergic neurogenesis (original) (raw)

References

  1. Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).
    CAS PubMed Google Scholar
  2. Pearson, B.J. & Doe, C.Q. Specification of temporal identity in the developing nervous system. Annu. Rev. Cell Dev. Biol. 20, 619–647 (2004).
    CAS PubMed Google Scholar
  3. Cordes, S.P. Molecular genetics of cranial nerve development in mouse. Nat. Rev. Neurosci. 2, 611–623 (2001).
    CAS PubMed Google Scholar
  4. Jacob, J., Tiveron, M.C., Brunet, J.F. & Guthrie, S. Role of the target in the pathfinding of facial visceral motor axons. Mol. Cell. Neurosci. 16, 14–26 (2000).
    CAS PubMed Google Scholar
  5. Jacobs, B.L. & Azmitia, E.C. Structure and function of the brain serotonin system. Physiol. Rev. 72, 165–229 (1992).
    CAS PubMed Google Scholar
  6. Gaspar, P., Cases, O. & Maroteaux, L. The developmental role of serotonin: news from mouse molecular genetics. Nat. Rev. Neurosci. 4, 1002–1012 (2003).
    CAS PubMed Google Scholar
  7. Paterson, D.S. et al. Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. J. Am. Med. Assoc. 296, 2124–2132 (2006).
    CAS Google Scholar
  8. Pierce, E.T. Time of origin of neurons in the brain stem of the mouse. Prog. Brain Res. 40, 53–65 (1973).
    CAS PubMed Google Scholar
  9. Covell, D.A., Jr. & Noden, D.M. Embryonic development of the chick primary trigeminal sensory-motor complex. J. Comp. Neurol. 286, 488–503 (1989).
    PubMed Google Scholar
  10. Pattyn, A. et al. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev. 17, 729–737 (2003).
    CAS PubMed PubMed Central Google Scholar
  11. Sako, H., Kojima, T. & Okado, N. Immunohistochemical study on the development of serotoninergic neurons in the chick: I. Distribution of cell bodies and fibers in the brain. J. Comp. Neurol. 253, 61–78 (1986).
    CAS PubMed Google Scholar
  12. Ye, W., Shimamura, K., Rubenstein, J.L., Hynes, M.A. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766 (1998).
    CAS PubMed Google Scholar
  13. Briscoe, J. et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signaling. Nature 398, 622–627 (1999).
    CAS PubMed Google Scholar
  14. Pattyn, A., Vallstedt, A., Dias, J.M., Sander, M. & Ericson, J. Complementary roles for Nkx6 and Nkx2 class proteins in the establishment of motoneuron identity in the hindbrain. Development 130, 4149–4159 (2003).
    CAS PubMed Google Scholar
  15. Craven, S.E. et al. Gata2 specifies serotonergic neurons downstream of sonic hedgehog. Development 131, 1165–1173 (2004).
    CAS PubMed Google Scholar
  16. Pattyn, A., Hirsch, M., Goridis, C. & Brunet, J.F. Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 127, 1349–1358 (2000).
    CAS PubMed Google Scholar
  17. Dubreuil, V., Hirsch, M.R., Pattyn, A., Brunet, J.F. & Goridis, C. The Phox2b transcription factor coordinately regulates neuronal cell cycle exit and identity. Development 127, 5191–5201 (2000).
    CAS PubMed Google Scholar
  18. Pattyn, A. et al. Ascl1/Mash1 is required for the development of central serotonergic neurons. Nat. Neurosci. 7, 589–595 (2004).
    CAS PubMed Google Scholar
  19. Tiveron, M.C., Pattyn, A., Hirsch, M.R. & Brunet, J.F. Role of Phox2b and Mash1 in the generation of the vestibular efferent nucleus. Dev. Biol. 260, 46–57 (2003).
    CAS PubMed Google Scholar
  20. van Doorninck, J.H. et al. GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J. Neurosci. 19, RC12 (1999).
    CAS PubMed Google Scholar
  21. Hendricks, T., Francis, N., Fyodorov, D. & Deneris, E.S. The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J. Neurosci. 19, 10348–10356 (1999).
    CAS PubMed PubMed Central Google Scholar
  22. Hendricks, T.J. et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37, 233–247 (2003).
    Article CAS PubMed Google Scholar
  23. Ding, Y.Q. et al. Lmx1b is essential for the development of serotonergic neurons. Nat. Neurosci. 6, 933–938 (2003).
    CAS PubMed Google Scholar
  24. Cheng, L. et al. Lmx1b, Pet-1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J. Neurosci. 23, 9961–9967 (2003).
    CAS PubMed PubMed Central Google Scholar
  25. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.F. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124, 4065–4075 (1997).
    CAS PubMed Google Scholar
  26. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.F. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399, 366–370 (1999).
    CAS PubMed Google Scholar
  27. Samad, O.A. et al. Integration of anteroposterior and dorsoventral regulation of Phox2b transcription in cranial motoneuron progenitors by homeodomain proteins. Development 131, 4071–4083 (2004).
    CAS PubMed Google Scholar
  28. Hallonet, M. et al. Maintenance of the specification of the anterior definitive endoderm and forebrain depends on the axial mesendoderm: a study using HNF3beta/Foxa2 conditional mutants. Dev. Biol. 243, 20–33 (2002).
    CAS PubMed Google Scholar
  29. Vallet, V., Antoine, B., Chafey, P., Vandewalle, A. & Kahn, A. Overproduction of a truncated hepatocyte nuclear factor 3 protein inhibits expression of liver-specific genes in hepatoma cells. Mol. Cell. Biol. 15, 5453–5460 (1995).
    CAS PubMed PubMed Central Google Scholar
  30. Wallace, J.A. An immunocytochemical study of the development of central serotoninergic neurons in the chick embryo. J. Comp. Neurol. 236, 443–453 (1985).
    CAS PubMed Google Scholar
  31. Ruiz i Altaba, A., Jessell, T.M. & Roelink, H. Restrictions to floor plate induction by hedgehog and winged-helix genes in the neural tube of frog embryos. Mol. Cell. Neurosci. 6, 106–121 (1995).
    CAS PubMed Google Scholar
  32. Jeong, Y. & Epstein, D.J. Distinct regulators of Shh transcription in the floor plate and notochord indicate separate origins for these tissues in the mouse node. Development 130, 3891–3902 (2003).
    CAS PubMed Google Scholar
  33. Hynes, M. et al. Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1. Neuron 19, 15–26 (1997).
    CAS PubMed Google Scholar
  34. Isaka, F. et al. Ectopic expression of the bHLH gene Math1 disturbs neural development. Eur. J. Neurosci. 11, 2582–2588 (1999).
    CAS PubMed Google Scholar
  35. Isshiki, T., Pearson, B., Holbrook, S. & Doe, C.Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511–521 (2001).
    CAS PubMed Google Scholar
  36. Hanashima, C., Li, S.C., Shen, L., Lai, E. & Fishell, G. Foxg1 suppresses early cortical cell fate. Science 303, 56–59 (2004).
    CAS PubMed Google Scholar
  37. Rowitch, D.H. Glial specification in the vertebrate neural tube. Nat. Rev. Neurosci. 5, 409–419 (2004).
    CAS PubMed Google Scholar
  38. Qi, Y. et al. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 128, 2723–2733 (2001).
    CAS PubMed Google Scholar
  39. Zhou, Q., Choi, G. & Anderson, D.J. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31, 791–807 (2001).
    CAS PubMed Google Scholar
  40. Ang, S.L. & Rossant, J. HNF-3 beta is essential for node and notochord formation in mouse development. Cell 78, 561–574 (1994).
    CAS PubMed Google Scholar
  41. Weinstein, D.C. et al. The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell 78, 575–588 (1994).
    CAS PubMed Google Scholar
  42. Placzek, M. & Briscoe, J. The floor plate: multiple cells, multiple signals. Nat. Rev. Neurosci. 6, 230–240 (2005).
    CAS PubMed Google Scholar
  43. Muhle, R., Trentacoste, S.V. & Rapin, I. The genetics of autism. Pediatrics 113, e472–e486 (2004).
    PubMed Google Scholar
  44. Amiel, J. et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat. Genet. 33, 459–461 (2003).
    CAS PubMed Google Scholar
  45. Rand, C.M., Berry-Kravis, E.M., Zhou, L., Fan, W. & Weese-Mayer, D.E. Sudden infant death syndrome: rare mutation in the serotonin system FEV gene. Pediatr Res. 62, 180–182 (2007).
    CAS PubMed Google Scholar
  46. Stamataki, D., Ulloa, F., Tsoni, S.V., Mynett, A. & Briscoe, J. A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube. Genes Dev. 19, 626–641 (2005).
    CAS PubMed PubMed Central Google Scholar
  47. Studer, M., Lumsden, A., Ariza-McNaughton, L., Bradley, A. & Krumlauf, R. Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 384, 630–634 (1996).
    CAS PubMed Google Scholar
  48. Dassule, H.R., Lewis, P., Bei, M., Maas, R. & McMahon, A.P. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127, 4775–4785 (2000).
    CAS PubMed Google Scholar
  49. Danielian, P.S., Muccino, D., Rowitch, D.H., Michael, S.K. & McMahon, A.P. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326 (1998).
    CAS PubMed Google Scholar
  50. Ericson, J., Morton, S., Kawakami, A., Roelink, H. & Jessell, T.M. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673 (1996).
    CAS PubMed Google Scholar

Download references