Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen Dragnet (original) (raw)

References

  1. Sanes, J.R. & Yamagata, M. Formation of lamina-specific synaptic connections. Curr. Opin. Neurobiol. 9, 79–87 (1999).
    Article CAS Google Scholar
  2. Nakamura, H. & Sugiyama, S. Polarity and laminar formation of the optic tectum in relation to retinal projection. J. Neurobiol. 59, 48–56 (2004).
    Article CAS Google Scholar
  3. Lemke, G. & Reber, M. Retinotectal mapping: new insights from molecular genetics. Annu. Rev. Cell Dev. Biol. 21, 551–580 (2005).
    Article CAS Google Scholar
  4. Yamagata, M. & Sanes, J.R. Target-independent diversification and target-specific projection of chemically defined retinal ganglion cell subsets. Development 121, 3763–3776 (1995).
    CAS PubMed Google Scholar
  5. Wohrn, J.C., Puelles, L., Nakagawa, S., Takeichi, M. & Redies, C. Cadherin expression in the retina and retinofugal pathways of the chicken embryo. J. Comp. Neurol. 396, 20–38 (1998).
    Article CAS Google Scholar
  6. Yamagata, M., Herman, J.P. & Sanes, J.R. Lamina-specific expression of adhesion molecules in developing chick optic tectum. J. Neurosci. 15, 4556–4571 (1995).
    Article CAS Google Scholar
  7. Inoue, A. & Sanes, J.R. Lamina-specific connectivity in the brain: regulation by N-cadherin, neurotrophins, and glycoconjugates. Science 276, 1428–1431 (1997).
    Article CAS Google Scholar
  8. Miskevich, F., Zhu, Y., Ranscht, B. & Sanes, J.R. Expression of multiple cadherins and catenins in the chick optic tectum. Mol. Cell. Neurosci. 12, 240–255 (1998).
    Article CAS Google Scholar
  9. Liu, Q., Sanborn, K.L., Cobb, N., Raymond, P.A. & Marrs, J.A. R-cadherin expression in the developing and adult zebrafish visual system. J. Comp. Neurol. 410, 303–319 (1999).
    Article CAS Google Scholar
  10. Takagi, S. et al. Expression of a cell adhesion molecule, neuropilin, in the developing chick nervous system. Dev. Biol. 170, 207–222 (1995).
    Article CAS Google Scholar
  11. Braisted, J.E. et al. Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system. Dev. Biol. 191, 14–28 (1997).
    Article CAS Google Scholar
  12. Bartsch, S., Husmann, K., Schachner, M. & Bartsch, U. The extracellular matrix molecule tenascin: expression in the developing chick retinotectal system and substrate properties for retinal ganglion cell neurites in vitro. Eur. J. Neurosci. 7, 907–916 (1995).
    Article CAS Google Scholar
  13. Perez, R.G. & Halfter, W. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth. Dev. Biol. 156, 278–292 (1993).
    Article CAS Google Scholar
  14. Frost, D.O., Edwards, M.A., Sachs, G.M. & Caviness, V.S., Jr. Retinotectal projection in reeler mutant mice: relationships among axon trajectories, arborization patterns and cytoarchitecture. Brain Res. 393, 109–120 (1986).
    Article CAS Google Scholar
  15. Xiao, T., Roeser, T., Staub, W. & Baier, H. A GFP-based genetic screen reveals mutations that disrupt the architecture of the zebrafish retinotectal projection. Development 132, 2955–2967 (2005).
    Article CAS Google Scholar
  16. Muto, A. et al. Forward genetic analysis of visual behavior in zebrafish. PLoS Genet. [online] 1, e66 (2005).
    Article Google Scholar
  17. Meyer, M.P. & Smith, S.J. Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J. Neurosci. 26, 3604–3614 (2006).
    Article CAS Google Scholar
  18. Schmidt, J.T., Buzzard, M., Borress, R. & Dhillon, S. MK801 increases retinotectal arbor size in developing zebrafish without affecting kinetics of branch elimination and addition. J. Neurobiol. 42, 303–314 (2000).
    Article CAS Google Scholar
  19. Hua, J.Y., Smear, M.C., Baier, H. & Smith, S.J. Regulation of axon growth in vivo by activity-based competition. Nature 434, 1022–1026 (2005).
    Article CAS Google Scholar
  20. Easter, S.S. Jr. & Malicki, J.J. The zebrafish eye: developmental and genetic analysis. Results Probl. Cell Differ. 40, 346–370 (2002).
    Article CAS Google Scholar
  21. Mould, A.P. et al. Identification of multiple integrin β1 homologs in zebrafish (Danio rerio). BMC Cell Biol. [online] 7, 24 (2006).
    Article Google Scholar
  22. Metcalfe, W.K., Myers, P.Z., Trevarrow, B., Bass, M.B. & Kimmel, C.B. Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish. Development 110, 491–504 (1990).
    CAS PubMed Google Scholar
  23. Sanes, J.R., Schachner, M. & Covault, J. Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle. J. Cell Biol. 102, 420–431 (1986).
    Article CAS Google Scholar
  24. Kruse, J., Keilhauer, G., Faissner, A., Timpl, R. & Schachner, M. The J1 glycoprotein—a novel nervous system cell adhesion molecule of the L2/HNK-1 family. Nature 316, 146–148 (1985).
    Article CAS Google Scholar
  25. Kruse, J. et al. Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature 311, 153–155 (1984).
    Article CAS Google Scholar
  26. Poschl, E. et al. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131, 1619–1628 (2004).
    Article Google Scholar
  27. Lee, J.S. & Chien, C.B. When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nat. Rev. Genet. 5, 923–935 (2004).
    Article CAS Google Scholar
  28. Lee, J.-S. et al. Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (boxer). Neuron 44, 947–960 (2004).
    Article CAS Google Scholar
  29. Yamagata, M., Weiner, J.A., Dulac, C., Roth, K.A. & Sanes, J.R. Labeled lines in the retinotectal system: markers for retinorecipient sublaminae and the retinal ganglion cell subsets that innervate them. Mol. Cell. Neurosci. 33, 296–310 (2006).
    Article CAS Google Scholar
  30. Robles, E. & Gomez, T.M. Focal adhesion kinase signaling at sites of integrin-mediated adhesion controls axon pathfinding. Nat. Neurosci. 9, 1274–1283 (2006).
    Article CAS Google Scholar
  31. Gaze, R.M., Keating, M.J. & Chung, S.H. The evolution of the retinotectal map during development in Xenopus. Proc. R. Soc. Lond. B 185, 301–330 (1974).
    Article CAS Google Scholar
  32. Miner, J.H. & Sanes, J.R. Collagen IV α3, α4, and α5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches. J. Cell Biol. 127, 879–891 (1994).
    Article CAS Google Scholar
  33. Son, Y.J., Patton, B.L. & Sanes, J.R. Induction of presynaptic differentiation in cultured neurons by extracellular matrix components. Eur. J. Neurosci. 11, 3457–3467 (1999).
    Article CAS Google Scholar
  34. Fox, M.A. et al. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129, 179–193 (2007).
    Article CAS Google Scholar
  35. White, D.J., Puranen, S., Johnson, M.S. & Heino, J. The collagen receptor subfamily of the integrins. Int. J. Biochem. Cell Biol. 36, 1405–1410 (2004).
    Article CAS Google Scholar
  36. Vogel, W., Gish, G.D., Alves, F. & Pawson, T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol. Cell 1, 13–23 (1997).
    Article CAS Google Scholar
  37. Venstrom, K. & Reichardt, L. Beta 8 integrins mediate interactions of chick sensory neurons with laminin-1, collagen IV, and fibronectin. Mol. Biol. Cell 6, 419–431 (1995).
    Article CAS Google Scholar
  38. Halfter, W. & Schurer, B. Disruption of the pial basal lamina during early avian embryonic development inhibits histogenesis and axonal pathfinding in the optic tectum. J. Comp. Neurol. 397, 105–117 (1998).
    Article CAS Google Scholar
  39. Halfter, W., Dong, S., Balasubramani, M. & Bier, M.E. Temporary disruption of the retinal basal lamina and its effect on retinal histogenesis. Dev. Biol. 238, 79–96 (2001).
    Article CAS Google Scholar
  40. Halfter, W., Dong, S., Yip, Y.P., Willem, M. & Mayer, U. A critical function of the pial basement membrane in cortical histogenesis. J. Neurosci. 22, 6029–6040 (2002).
    Article CAS Google Scholar
  41. Hu, H. Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein. Nat. Neurosci. 4, 695–701 (2001).
    Article CAS Google Scholar
  42. Van Vactor, D., Wall, D.P. & Johnson, K.G. Heparan sulfate proteoglycans and the emergence of neuronal connectivity. Curr. Opin. Neurobiol. 16, 40–51 (2006).
    Article CAS Google Scholar
  43. Stier, H. & Schlosshauer, B. Different cell surface areas of polarized radial glia having opposite effects on axonal outgrowth. Eur. J. Neurosci. 10, 1000–1010 (1998).
    Article CAS Google Scholar
  44. Barker, D.F. et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248, 1224–1227 (1990).
    Article CAS Google Scholar
  45. Hudson, B.G., Tryggvason, K., Sundaramoorthy, M. & Neilson, E.G. Alport's syndrome, Goodpasture's syndrome, and type IV collagen. N. Engl. J. Med. 348, 2543–2556 (2003).
    Article CAS Google Scholar
  46. Kawakami, H. et al. Chronic nephritis, sensorineural deafness, growth and developmental retardation, hyperkinesis, and cleft soft palate in a 5-year-old boy. A new combination? Nephron 56, 214–217 (1990).
    Article CAS Google Scholar
  47. Shields, G.W., Pataki, C. & DeLisi, L.E. A family with Alport syndrome and psychosis. Schizophr. Res. 3, 235–239 (1990).
    Article CAS Google Scholar
  48. Sener, R.N. Hereditary nephritis (Alport syndrome): MR imaging findings in the brain. Comput. Med. Imaging Graph. 22, 71–72 (1998).
    Article CAS Google Scholar
  49. Scott, E.K. et al. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat. Methods. 4, 323–326 (2007).
    Article CAS Google Scholar

Download references