Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen Dragnet (original) (raw)
References
Sanes, J.R. & Yamagata, M. Formation of lamina-specific synaptic connections. Curr. Opin. Neurobiol.9, 79–87 (1999). ArticleCAS Google Scholar
Nakamura, H. & Sugiyama, S. Polarity and laminar formation of the optic tectum in relation to retinal projection. J. Neurobiol.59, 48–56 (2004). ArticleCAS Google Scholar
Lemke, G. & Reber, M. Retinotectal mapping: new insights from molecular genetics. Annu. Rev. Cell Dev. Biol.21, 551–580 (2005). ArticleCAS Google Scholar
Yamagata, M. & Sanes, J.R. Target-independent diversification and target-specific projection of chemically defined retinal ganglion cell subsets. Development121, 3763–3776 (1995). CASPubMed Google Scholar
Wohrn, J.C., Puelles, L., Nakagawa, S., Takeichi, M. & Redies, C. Cadherin expression in the retina and retinofugal pathways of the chicken embryo. J. Comp. Neurol.396, 20–38 (1998). ArticleCAS Google Scholar
Yamagata, M., Herman, J.P. & Sanes, J.R. Lamina-specific expression of adhesion molecules in developing chick optic tectum. J. Neurosci.15, 4556–4571 (1995). ArticleCAS Google Scholar
Inoue, A. & Sanes, J.R. Lamina-specific connectivity in the brain: regulation by N-cadherin, neurotrophins, and glycoconjugates. Science276, 1428–1431 (1997). ArticleCAS Google Scholar
Miskevich, F., Zhu, Y., Ranscht, B. & Sanes, J.R. Expression of multiple cadherins and catenins in the chick optic tectum. Mol. Cell. Neurosci.12, 240–255 (1998). ArticleCAS Google Scholar
Liu, Q., Sanborn, K.L., Cobb, N., Raymond, P.A. & Marrs, J.A. R-cadherin expression in the developing and adult zebrafish visual system. J. Comp. Neurol.410, 303–319 (1999). ArticleCAS Google Scholar
Takagi, S. et al. Expression of a cell adhesion molecule, neuropilin, in the developing chick nervous system. Dev. Biol.170, 207–222 (1995). ArticleCAS Google Scholar
Braisted, J.E. et al. Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system. Dev. Biol.191, 14–28 (1997). ArticleCAS Google Scholar
Bartsch, S., Husmann, K., Schachner, M. & Bartsch, U. The extracellular matrix molecule tenascin: expression in the developing chick retinotectal system and substrate properties for retinal ganglion cell neurites in vitro. Eur. J. Neurosci.7, 907–916 (1995). ArticleCAS Google Scholar
Perez, R.G. & Halfter, W. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth. Dev. Biol.156, 278–292 (1993). ArticleCAS Google Scholar
Frost, D.O., Edwards, M.A., Sachs, G.M. & Caviness, V.S., Jr. Retinotectal projection in reeler mutant mice: relationships among axon trajectories, arborization patterns and cytoarchitecture. Brain Res.393, 109–120 (1986). ArticleCAS Google Scholar
Xiao, T., Roeser, T., Staub, W. & Baier, H. A GFP-based genetic screen reveals mutations that disrupt the architecture of the zebrafish retinotectal projection. Development132, 2955–2967 (2005). ArticleCAS Google Scholar
Muto, A. et al. Forward genetic analysis of visual behavior in zebrafish. PLoS Genet. [online]1, e66 (2005). Article Google Scholar
Meyer, M.P. & Smith, S.J. Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J. Neurosci.26, 3604–3614 (2006). ArticleCAS Google Scholar
Schmidt, J.T., Buzzard, M., Borress, R. & Dhillon, S. MK801 increases retinotectal arbor size in developing zebrafish without affecting kinetics of branch elimination and addition. J. Neurobiol.42, 303–314 (2000). ArticleCAS Google Scholar
Hua, J.Y., Smear, M.C., Baier, H. & Smith, S.J. Regulation of axon growth in vivo by activity-based competition. Nature434, 1022–1026 (2005). ArticleCAS Google Scholar
Easter, S.S. Jr. & Malicki, J.J. The zebrafish eye: developmental and genetic analysis. Results Probl. Cell Differ.40, 346–370 (2002). ArticleCAS Google Scholar
Mould, A.P. et al. Identification of multiple integrin β1 homologs in zebrafish (Danio rerio). BMC Cell Biol. [online]7, 24 (2006). Article Google Scholar
Metcalfe, W.K., Myers, P.Z., Trevarrow, B., Bass, M.B. & Kimmel, C.B. Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish. Development110, 491–504 (1990). CASPubMed Google Scholar
Sanes, J.R., Schachner, M. & Covault, J. Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle. J. Cell Biol.102, 420–431 (1986). ArticleCAS Google Scholar
Kruse, J., Keilhauer, G., Faissner, A., Timpl, R. & Schachner, M. The J1 glycoprotein—a novel nervous system cell adhesion molecule of the L2/HNK-1 family. Nature316, 146–148 (1985). ArticleCAS Google Scholar
Kruse, J. et al. Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature311, 153–155 (1984). ArticleCAS Google Scholar
Poschl, E. et al. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development131, 1619–1628 (2004). Article Google Scholar
Lee, J.S. & Chien, C.B. When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nat. Rev. Genet.5, 923–935 (2004). ArticleCAS Google Scholar
Lee, J.-S. et al. Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (boxer). Neuron44, 947–960 (2004). ArticleCAS Google Scholar
Yamagata, M., Weiner, J.A., Dulac, C., Roth, K.A. & Sanes, J.R. Labeled lines in the retinotectal system: markers for retinorecipient sublaminae and the retinal ganglion cell subsets that innervate them. Mol. Cell. Neurosci.33, 296–310 (2006). ArticleCAS Google Scholar
Robles, E. & Gomez, T.M. Focal adhesion kinase signaling at sites of integrin-mediated adhesion controls axon pathfinding. Nat. Neurosci.9, 1274–1283 (2006). ArticleCAS Google Scholar
Gaze, R.M., Keating, M.J. & Chung, S.H. The evolution of the retinotectal map during development in Xenopus. Proc. R. Soc. Lond. B185, 301–330 (1974). ArticleCAS Google Scholar
Miner, J.H. & Sanes, J.R. Collagen IV α3, α4, and α5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches. J. Cell Biol.127, 879–891 (1994). ArticleCAS Google Scholar
Son, Y.J., Patton, B.L. & Sanes, J.R. Induction of presynaptic differentiation in cultured neurons by extracellular matrix components. Eur. J. Neurosci.11, 3457–3467 (1999). ArticleCAS Google Scholar
Fox, M.A. et al. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell129, 179–193 (2007). ArticleCAS Google Scholar
White, D.J., Puranen, S., Johnson, M.S. & Heino, J. The collagen receptor subfamily of the integrins. Int. J. Biochem. Cell Biol.36, 1405–1410 (2004). ArticleCAS Google Scholar
Vogel, W., Gish, G.D., Alves, F. & Pawson, T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol. Cell1, 13–23 (1997). ArticleCAS Google Scholar
Venstrom, K. & Reichardt, L. Beta 8 integrins mediate interactions of chick sensory neurons with laminin-1, collagen IV, and fibronectin. Mol. Biol. Cell6, 419–431 (1995). ArticleCAS Google Scholar
Halfter, W. & Schurer, B. Disruption of the pial basal lamina during early avian embryonic development inhibits histogenesis and axonal pathfinding in the optic tectum. J. Comp. Neurol.397, 105–117 (1998). ArticleCAS Google Scholar
Halfter, W., Dong, S., Balasubramani, M. & Bier, M.E. Temporary disruption of the retinal basal lamina and its effect on retinal histogenesis. Dev. Biol.238, 79–96 (2001). ArticleCAS Google Scholar
Halfter, W., Dong, S., Yip, Y.P., Willem, M. & Mayer, U. A critical function of the pial basement membrane in cortical histogenesis. J. Neurosci.22, 6029–6040 (2002). ArticleCAS Google Scholar
Hu, H. Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein. Nat. Neurosci.4, 695–701 (2001). ArticleCAS Google Scholar
Van Vactor, D., Wall, D.P. & Johnson, K.G. Heparan sulfate proteoglycans and the emergence of neuronal connectivity. Curr. Opin. Neurobiol.16, 40–51 (2006). ArticleCAS Google Scholar
Stier, H. & Schlosshauer, B. Different cell surface areas of polarized radial glia having opposite effects on axonal outgrowth. Eur. J. Neurosci.10, 1000–1010 (1998). ArticleCAS Google Scholar
Barker, D.F. et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science248, 1224–1227 (1990). ArticleCAS Google Scholar
Hudson, B.G., Tryggvason, K., Sundaramoorthy, M. & Neilson, E.G. Alport's syndrome, Goodpasture's syndrome, and type IV collagen. N. Engl. J. Med.348, 2543–2556 (2003). ArticleCAS Google Scholar
Kawakami, H. et al. Chronic nephritis, sensorineural deafness, growth and developmental retardation, hyperkinesis, and cleft soft palate in a 5-year-old boy. A new combination? Nephron56, 214–217 (1990). ArticleCAS Google Scholar
Shields, G.W., Pataki, C. & DeLisi, L.E. A family with Alport syndrome and psychosis. Schizophr. Res.3, 235–239 (1990). ArticleCAS Google Scholar
Sener, R.N. Hereditary nephritis (Alport syndrome): MR imaging findings in the brain. Comput. Med. Imaging Graph.22, 71–72 (1998). ArticleCAS Google Scholar
Scott, E.K. et al. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat. Methods.4, 323–326 (2007). ArticleCAS Google Scholar