Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine (original) (raw)

References

  1. Nestler, E. J. Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119–128 (2001).
    Article CAS Google Scholar
  2. Robinson, T. E. & Berridge, K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain. Res. Brain. Res. Rev. 18, 247–291 (1993).
    Article CAS Google Scholar
  3. Wolf, M. E. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol. 54, 679–720 (1998).
    Article CAS Google Scholar
  4. Vanderschuren, L. J. & Kalivas, P. W. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl.) 151, 99–120 (2000).
    Article CAS Google Scholar
  5. Schenk, S. & Snow, S. Sensitization to cocaine's motor activating properties produced by electrical kindling of the medial prefrontal cortex but not of the hippocampus. Brain Res. 659, 17–22 (1994).
    Article CAS Google Scholar
  6. Ungless, M. A., Whisler, J. L., Malenka, R. C. & Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583–587 (2001).
    Article CAS Google Scholar
  7. Pierce, R. C., Bell, K., Duffy, P. & Kalivas, P. W. Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J. Neurosci. 16, 1550–1560 (1996).
    Article CAS Google Scholar
  8. Pierce, R. C., Reeder, D. C., Hicks, J., Morgan, Z. R. & Kalivas, P. W. Ibotenic acid lesions of the dorsal prefrontal cortex disrupt the expression of behavioral sensitization to cocaine. Neuroscience 82, 1103–1114 (1998).
    Article CAS Google Scholar
  9. Li, Y. & Wolf, M. E. Ibotenic acid lesions of prefrontal cortex do not prevent expression of behavioral sensitization to amphetamine. Behav. Brain. Res. 84, 285–289 (1997).
    Article CAS Google Scholar
  10. Nicola, S. M., Kombian, S. B. & Malenka, R. C. Psychostimulants depress excitatory synaptic transmission in the nucleus accumbens via presynaptic D1-like dopamine receptors. J. Neurosci. 16, 1591–1604 (1996).
    Article CAS Google Scholar
  11. Zahm, D. S. Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Ann. NY Acad. Sci. 877, 113–128 (1999).
    Article CAS Google Scholar
  12. Zucker, R. S. Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13–31 (1989).
    Article CAS Google Scholar
  13. Sah, P., Hestrin, S. & Nicoll, R. A. Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons. Science 246, 815–818 (1989).
    Article CAS Google Scholar
  14. Malenka, R. C. & Nicoll, R. A. Silent synapses speak up. Neuron 19, 473–476 (1997).
    Article CAS Google Scholar
  15. Kullmann, D. M. Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation. Neuron 12, 1111–1120 (1994).
    Article CAS Google Scholar
  16. Goda, Y. & Stevens, C. F. Two components of transmitter release at a central synapse. Proc. Natl. Acad. Sci. USA 91, 12942–12946 (1994).
    Article CAS Google Scholar
  17. Oliet, S. H., Malenka, R. C. & Nicoll, R. A. Bidirectional control of quantal size by synaptic activity in the hippocampus. Science 271, 1294–1297 (1996).
    Article CAS Google Scholar
  18. Thomas, M. J., Malenka, R. C. & Bonci, A. Modulation of long-term depression by dopamine in the mesolimbic system. J. Neurosci. 20, 5581–5586 (2000).
    Article CAS Google Scholar
  19. Carroll, R. C., Beattie, E. C., von Zastrow, M. & Malenka, R. C. Role of AMPA receptor endocytosis in synaptic plasticity. Nat. Rev. Neurosci. 2, 315–324 (2001).
    Article CAS Google Scholar
  20. Lee, H. K., Barbarosie, M., Kameyama, K., Bear, M. F. & Huganir, R. L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000).
    Article CAS Google Scholar
  21. Segal, D. S. & Schuckit, M. A. in Stimulants: Neurochemical, Behavioral and Clinical Perspectives (ed. Creese, I.) 131–167 (Raven, New York, 1983).
    Google Scholar
  22. White, F. J., Hu, X. T., Zhang, X. F. & Wolf, M. E. Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J. Pharmacol. Exp. Ther. 273, 445–454 (1995).
    CAS PubMed Google Scholar
  23. Zhang, X. F., Hu, X. T. & White, F. J. Whole-cell plasticity in cocaine withdrawal: reduced sodium currents in nucleus accumbens neurons. J. Neurosci. 18, 488–498 (1998).
    Article Google Scholar
  24. Lu, W., Chen, H., Xue, C. J. & Wolf, M. E. Repeated amphetamine administration alters the expression of mRNA for AMPA receptor subunits in rat nucleus accumbens and prefrontal cortex. Synapse 26, 269–280 (1997).
    Article CAS Google Scholar
  25. Lu, W. & Wolf, M. E. Repeated amphetamine administration alters AMPA receptor subunit expression in rat nucleus accumbens and medial prefrontal cortex. Synapse 32, 119–131 (1999).
    Article CAS Google Scholar
  26. Churchill, L., Swanson, C. J., Urbina, M. & Kalivas, P. W. Repeated cocaine alters glutamate receptor subunit levels in the nucleus accumbens and ventral tegmental area of rats that develop behavioral sensitization. J. Neurochem. 72, 2397–2403 (1999).
    Article CAS Google Scholar
  27. Bibb, J. A. et al. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410, 376–380 (2001).
    Article CAS Google Scholar
  28. Kelz, M. B. et al. Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature 401, 272–276 (1999).
    Article CAS Google Scholar
  29. Wise, R. A. Drug-activation of brain reward pathways. Drug Alcohol. Depend. 51, 13–22 (1998).
    Article CAS Google Scholar
  30. Pennartz, C. M., Groenewegen, H. J. & Lopes da Silva, F. H. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog. Neurobiol. 42, 719–761 (1994).
    Article CAS Google Scholar
  31. Carlezon, W. A. Jr. & Wise, R. A. Rewarding actions of phencyclidine and related drugs in nucleus accumbens shell and frontal cortex. J. Neurosci. 16, 3112–3122 (1996).
    Article CAS Google Scholar
  32. McGinty, J. F., ed. Advancing from the Ventral Striatum to the Extended Amygdala: Implications for Neuropsychiatry and Drug Abuse Vol. 877 (New York Academy of Sciences, New York, New York, 1999).
    Google Scholar
  33. Carlezon, W. A. Jr., Devine, D. P. & Wise, R. A. Habit-forming actions of nomifensine in nucleus accumbens. Psychopharmacology (Berl.) 122, 194–197 (1995).
    Article CAS Google Scholar
  34. McKinzie, D. L., Rodd-Henricks, Z. A., Dagon, C. T., Murphy, J. M. & McBride, W. J. Cocaine is self-administered into the shell region of the nucleus accumbens in Wistar rats. Ann. NY Acad. Sci. 877, 788–791 (1999).
    Article CAS Google Scholar
  35. Pontieri, F. E. et al. Psychostimulant drugs increase glucose utilization in the shell of the rat nucleus accumbens. Neuroreport 5, 2561–2564 (1994).
    Article CAS Google Scholar
  36. Pontieri, F. E., Tanda, G. & Di Chiara, G. Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc. Natl. Acad. Sci. USA 92, 12304–12308 (1995).
    Article CAS Google Scholar
  37. Caine, S. B., Heinrichs, S. C., Coffin, V. L. & Koob, G. F. Effects of the dopamine D-1 antagonist SCH 23390 microinjected into the accumbens, amygdala or striatum on cocaine self-administration in the rat. Brain Res. 692, 47–56 (1995).
    Article CAS Google Scholar
  38. Pierce, R. C. & Kalivas, P. W. Amphetamine produces sensitized increases in locomotion and extracellular dopamine preferentially in the nucleus accumbens shell of rats administered repeated cocaine. J. Pharmacol. Exp. Ther. 275, 1019–1029 (1995).
    CAS PubMed Google Scholar
  39. Parkinson, J. A., Olmstead, M. C., Burns, L. H., Robbins, T. W. & Everitt, B. J. Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J. Neurosci. 19, 2401–2411 (1999).
    Article CAS Google Scholar
  40. Robinson, T. E. & Kolb, B. Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J. Neurosci. 17, 8491–8497 (1997).
    Article CAS Google Scholar
  41. Robinson, T. E. & Kolb, B. Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci. 11, 1598–1604 (1999).
    Article CAS Google Scholar
  42. Rogan, M. T., Staubli, U. V. & LeDoux, J. E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607 (1997).
    Article CAS Google Scholar
  43. McKernan, M. G. & Shinnick-Gallagher, P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390, 607–611 (1997).
    Article CAS Google Scholar
  44. Moser, E. I., Krobert, K. A., Moser, M. B. & Morris, R. G. Impaired spatial learning after saturation of long-term potentiation. Science 281, 2038–2042 (1998).
    Article CAS Google Scholar
  45. Andersen, P., Moser, E., Moser, M. B. & Trommald, M. Cellular correlates to spatial learning in the rat hippocampus. J. Physiol. (Paris) 90, 349 (1996).
    Article CAS Google Scholar
  46. Rioult-Pedotti, M. S., Friedman, D. & Donoghue, J. P. Learning-induced LTP in neocortex. Science 290, 533–536 (2000).
    Article CAS Google Scholar
  47. Hyman, S. E. & Malenka, R. C. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2, 695–703 (2001).
    Article CAS Google Scholar

Download references