Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells (original) (raw)

References

  1. Matthew, W.D., Tsavaler, L. & Reichardt, L.F. Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J. Cell Biol. 91, 257–269 (1981).
    Article CAS Google Scholar
  2. Perin, M.S., Brose, N., Jahn, R. & Südhof, T.C. Domain structure of synaptotagmin (p65). J. Biol. Chem. 266, 623–629 (1991).
    CAS PubMed Google Scholar
  3. Geppert, M., Archer, B.T. III & Südhof, T.C. Synaptotagmin II: a novel differentially distributed form of synaptotagmin. J. Biol. Chem. 266, 13548–13552 (1991).
    CAS PubMed Google Scholar
  4. Geppert, M., Goda, Y., Hammer, R.E., Li, C., Rosahl, T.W., Stevens, C.F. & Südhof, T.C. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).
    Article CAS Google Scholar
  5. Fernández-Chacón, R. et al. Synaptotagmin I functions as a Ca2+-regulator of release probability. Nature 410, 41–49 (2001).
    Article Google Scholar
  6. Voets, T. et al. Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin 1. Proc. Natl. Acad. Sci. USA 98, 11680–11685 (2001).
    Article CAS Google Scholar
  7. Davletov, B. & Südhof, T.C. A single C2-domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid-binding. J. Biol. Chem. 268, 26386–26390 (1993).
    CAS PubMed Google Scholar
  8. Chapman, E.R. & Jahn, R. Calcium-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. Autonomous function of a single C2-homologous domain. J. Biol. Chem. 269, 5735–5741 (1994).
    CAS PubMed Google Scholar
  9. Li, C. et al. Ca2+-dependent and Ca2+-independent activities of neural and nonneural synaptotagmins. Nature 375 594–599 (1995).
    Article CAS Google Scholar
  10. Fernandez, I. et al. Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid-binding machine. Neuron 32, 1057–1069 (2001).
    Article CAS Google Scholar
  11. Sugita, S., Shin, O-H., Han, W., Lao, Y. & Südhof, T.C. Synaptotagmins form a hierarchy of exocytotic Ca2+-sensors with distinct Ca2+-affinities. EMBO J. 21, 270–280 (2002).
    Article CAS Google Scholar
  12. Südhof, T.C. Synaptotagmins: why so many? J. Biol. Chem. 277, 7629–7632 (2002).
    Article Google Scholar
  13. Bennett, M.K., Calakos, N. & Scheller, R.H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259 (1992).
    Article CAS Google Scholar
  14. Kee, Y. & Scheller, R.H. Localization of synaptotagmin-binding domains on syntaxin. J. Neurosci. 16, 1975–1981 (1996).
    Article CAS Google Scholar
  15. Sugita, S., Hata, Y. & Südhof, T.C. Distinct Ca2+-dependent properties of the first and second C2-domains of synaptotagmin I. J. Biol. Chem. 271, 1262–1265 (1996).
    Article CAS Google Scholar
  16. Chapman, E.R., An, S., Edwardson, J.M. & Jahn, R. A novel function for the second C2 domain of synaptotagmin. Ca2+-triggered dimerization. J. Biol. Chem. 271, 5844–5849 (1996).
    Article CAS Google Scholar
  17. Zhang, X., Rizo, R. & Südhof, T.C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin. Biochemistry 37, 12395–12403 (1998).
    Article CAS Google Scholar
  18. Bollmann, J.H., Sakmann, B. & Borst, J.G. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957 (2000).
    Article CAS Google Scholar
  19. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000).
    Article CAS Google Scholar
  20. Shoji-Kasai, Y. et al. Neurotransmitter release from synaptotagmin-deficient clonal variants of PC12 cells. Science 256, 1821–1823 (1992).
    Article CAS Google Scholar
  21. Wang, C.T. et al. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 294, 1111–1115 (2001).
    Article CAS Google Scholar
  22. Mizuta, M. et al. Synaptotagmin III is a novel isoform of rat synaptotagmin expressed in endocrine and neuronal cells. J. Biol. Chem. 269, 11675–11678 (1994).
    CAS PubMed Google Scholar
  23. Sugita, S. et al. Synaptotagmin VII as a plasma membrane Ca2+-sensor in exocytosis. Neuron 30, 459–473 (2001).
    Article CAS Google Scholar
  24. Butz, S., Fernandez-Chacon, R., Schmitz, F., Jahn, R. & Südhof, T.C. The subcellular localizations of atypical synaptotagmins: synaptotagmin III is enriched in synapses and synaptic plasma membranes but not in synaptic vesicles. J. Biol. Chem. 274, 18290–18296 (1999).
    Article CAS Google Scholar
  25. Ahnert-Hilger, G.M., Brautigam, M. & Gratzl, M. Ca2+-stimulated catecholamine release from alpha-toxin-cracked PC12 cells: biochemical evidence for exocytosis and its modulation by protein kinase C and G proteins. Biochemistry 26, 7842–7848 (1987).
    Article CAS Google Scholar
  26. Chamberlain, L.H., Roth, D., Morgan, A. & Burgoyne, R.D. Distinct effects of α-SNAP, 14-3-3 proteins, and calmodulin on priming and triggering of regulated exocytosis. J. Cell Biol. 130, 1063–1070 (1995).
    Article CAS Google Scholar
  27. Chen, Y.A., Scales, S.J., Patel, S.M., Doung, Y-C. & Scheller, R.H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165–174 (1999).
    Article CAS Google Scholar
  28. Avery, J. et al. A cell-free system for regulated exocytosis in PC12 cells. J. Cell Biol. 148, 317–324 (2000).
    Article CAS Google Scholar
  29. Earles, C.A., Bai, J., Wang, P. & Chapman, E.R. The tandem C2-domains of synaptotagmin contain redundant Ca2+-binding sites that cooperate to engage t-SNAREs and trigger exocytosis. J. Cell Biol. 154, 1117–1123 (2001).
    Article CAS Google Scholar
  30. Banerjee, A., Kowalchyk, J.A., Dasgupta, B.R. & Martin, T.F. SNAP-25 is required for a late postdocking step in Ca2+-dependent exocytosis. J. Biol. Chem. 271, 20227–20230 (1996).
    Article CAS Google Scholar
  31. Zhong, P., Chen, Y.A., Tam, D., Chung, D., Scheller, R.H. & Miljanich, G.P. An α-helical minimal binding domain within the H3 domain of syntaxin is required for SNAP-25 binding. Biochemistry 36, 4317–4326 (1997).
    Article CAS Google Scholar
  32. Shao, X., Davletov, B.A., Sutton, R.B., Südhof, T.C. & Rizo, J. Bipartite Ca2+-binding motif in C2-domains of synaptotagmin and protein kinase C. Science 273, 248–251 (2001).
    Article Google Scholar
  33. Gerber, S.H., Rizo, J. & Südhof, T.C. The top loops of the C2-domains from synaptotagmin and phospholipase A2 control function specificity. J. Biol. Chem. 276, 32288–32292 (2001).
    Article CAS Google Scholar
  34. Gerber, S.H., Rizo, J., & Südhof, T.C. Role of electrostatic and hydrophobic interactions in Ca2+-dependent phospholipid binding by the C2A-domain of synaptotagmin 1. Diabetes 51 (suppl. 1), S12–S18 (2002).
    Article CAS Google Scholar
  35. Chapman, E.R. & Davis, A.F. Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J. Biol. Chem. 273, 13995–14001 (1998).
    Article CAS Google Scholar
  36. Gerona, R.R., Larsen, E.C., Kowalchyk, J.A., & Martin, T.F. The C terminus of SNAP25 is essential for Ca2+-dependent binding of synaptotagmin to SNARE complexes. J. Biol. Chem. 275, 6328–6336 (2000).
    Article CAS Google Scholar
  37. Voets, T. Dissection of three Ca2+-dependent steps leading to secretion in chromaffin cells from mouse adrenal slices. Neuron 28, 537–545 (2000).
    Article CAS Google Scholar
  38. Nalefski, E.A. et al. Independent folding and ligand specificity of the C2 calcium-dependent lipid binding domain of cytosolic phospholipase A2. J. Biol. Chem. 273, 1365–1372 (1998).
    Article CAS Google Scholar
  39. Davletov, B., Perisic, O. & Williams, R.L. Calcium-dependent membrane penetration is a hallmark of the C2 domain of cytosolic phospholipase A2 whereas the C2A domain of synaptotagmin binds membranes electrostatically. J. Biol. Chem. 273, 19093–19096 (1998).
    Article CAS Google Scholar
  40. Gennis, R.B. Biomembranes: Molecular Structure and Function (Springer, New York, 1989).
    Book Google Scholar
  41. Walent, J.H., Porter, B.W. & Martin, T.F. A novel 145 kd brain cytosolic protein reconstitutes Ca2+-regulated secretion in permeable neuroendocrine cells. Cell 70, 765–775 (1992).
    Article CAS Google Scholar
  42. Guan, K.L. & Dixon, J.E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem. 192, 262–267 (1991).
    Article CAS Google Scholar
  43. Ubach, J. et al. The C2B-domain of synaptotagmin 1 is a Ca2+-binding module. Biochemistry 40, 5854–5860 (2001).
    Article CAS Google Scholar
  44. Klenchin, V.A., Kowalshyk, J.A. & Martin, T.F.J. Large dense-core vesicle exocytosis in PC12 cells. Methods 18, 204–208 (1998).
    Article Google Scholar
  45. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).
    Article CAS Google Scholar
  46. Johnston, P.A., Jahn, R. & Südhof, T.C. Transmembrane topography and evolutionary conservation of synaptophysin. J. Biol. Chem. 264, 1268–1273 (1989).
    CAS PubMed Google Scholar

Download references