Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians (original) (raw)

References

  1. Zatorre, R.J. & Peretz, I. The biological foundations of music. Ann. NY Acad. Sci. 930, (2001).
  2. Zatorre, R.J. & Binder, J.R. in Brain Mapping the Systems (eds. Toga, A. W. & Maziotta, J. G.) 365–402 (Academic, San Diego, California, 2000).
    Book Google Scholar
  3. Liégeois-Chauvel, C., Peretz, I., Bahaï, M., Laguitton, V. & Chauvel, P. Contribution of different cortical areas in the temporal lobes to music processing. Brain 121, 1853–1867 (1998).
    Article Google Scholar
  4. Maess, B., Koelsch, S., Gunter, T.C. & Friederici, A.D. Musical syntax is processed in Broca's area: an MEG study. Nat. Neurosci. 4, 540–545 (2001).
    Article CAS Google Scholar
  5. Blood, A.J., Zatorre, R.J., Bermudez, P. & Evans, A.C. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat. Neurosci. 2, 382–387 (1999).
    Article CAS Google Scholar
  6. Schiavetto, A., Cortese, F. & Alain, C. Global and local processing of musical sequences: an event-related brain potential study. Neuroreport 10, 2467–2472 (1999).
    Article CAS Google Scholar
  7. Patel, A.D. & Balaban, E. Human pitch perception is reflected in the timing of stimulus-related cortical activity. Nat. Neurosci. 4, 839–844 (2001).
    Article CAS Google Scholar
  8. Zatorre, R.J., Evans, A.C. & Meyer, E. Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci. 14, 1908–1919 (1994).
    Article CAS Google Scholar
  9. Zatorre, R.J., Perry, D.W., Beckett, C.A., Westbury, C.F. & Evans, A.C. Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proc. Natl. Acad. Sci. USA 95, 3172–3177 (1998).
    Article CAS Google Scholar
  10. Schlaug, G., Jäncke, L., Huang, Y. & Steinmetz, H. In vivo evidence of structural brain asymmetry in musicians. Science 267, 699–701 (1995).
    Article CAS Google Scholar
  11. Schlaug, G., Jäncke, L., Huang, Y., Staiger, J.F. & Steinmetz, H. Increased corpus callosum size in musicians. Neuropsychologia 33, 1047–1055 (1995).
    Article CAS Google Scholar
  12. Münte, T., Kohlmetz, C. & Altenmüller, E. Superior auditory spatial tuning in conductors. Nature 409, 580 (2001).
  13. Altenmüller, E. Electrophysiological correlates of music perception in the human brain. Eur. Arch. Psychiatry Neurol. Sci. 235, 342–354 (1986).
    Article Google Scholar
  14. Wayman, J.W., Frisina, R.D. & Walton, J.P. Effects of musical training and absolute pitch ability on event-related activity in response to sine tones. J. Acoust. Soc. Am. 91, 3527–3531 (1992).
    Article CAS Google Scholar
  15. Crummer, G.C., Walton, J.P., Wayman, J.W., Hantz, E.C. & Frisina, R.D. Neural processing of musical timbre by musicians, nonmusicians, and musicians possessing absolute pitch. J. Acoust. Soc. Am. 95, 2720–2727 (1994).
    Article CAS Google Scholar
  16. Koelsch, S., Schröger, E. & Tervaniemi, M. Superior pre-attentive auditory processing in musicians. Neuroreport 10, 1309–1313 (1999).
    Article CAS Google Scholar
  17. Pantev, C. et al. Increased auditory cortical representation in musicians. Nature 392, 811–813 (1998).
    Article CAS Google Scholar
  18. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B. & Taub, E. Increased cortical representation of the left hand in string players. Science 270, 305–307 (1995).
    Article CAS Google Scholar
  19. Hirata, Y., Kuriki, S. & Pantev, C. Musicians with absolute pitch show distinct neural activities in the auditory cortex. Neuroreport 10, 999–1002 (1999).
    Article CAS Google Scholar
  20. Liégeois-Chauvel, C., Musolino, A., Badier, J.M., Marquis, P. & Chauvel, P. Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr. Clin. Neurophysiol. 92, 204–214 (1994).
    Article Google Scholar
  21. Scherg, M. & von Cramon, D. Evoked dipole source potentials of the human auditory cortex. Electroencephalogr. Clin. Neurophysiol. 65, 344–360 (1986).
    Article CAS Google Scholar
  22. Rupp, A. et al. Fast temporal interactions in human auditory cortex. Neuroreport 11, 3731–3736 (2000).
    Article CAS Google Scholar
  23. Gutschalk, A. et al. Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex. Clin. Neurophysiol. 110, 856–868 (1999).
    Article CAS Google Scholar
  24. Braak, H. The pigment architecture of the human temporal lobe. Anat. Embryol. 154, 214–240 (1978).
    Article Google Scholar
  25. Galaburda, A. & Sanides, F. Cytoarchitectonic organization of the human auditory cortex. J. Comp. Neurol. 190, 597–610 (1980).
    Article CAS Google Scholar
  26. Rademacher, J., Caviness, V.S., Steinmetz, H. & Galaburda, A.M. Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb. Cortex 3, 313–329 (1993).
    Article CAS Google Scholar
  27. Hackett, T.A., Preuss, T.M. & Kaas, J.H. Architectonic identification of the core region in auditory cortex of macaques, chimpanzees and humans. J. Comp. Neurol. 441, 197–222 (2001).
    Article CAS Google Scholar
  28. Rivier, F. & Clarke, S. Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. Neuroimage 6, 288–304 (1997).
    Article CAS Google Scholar
  29. Wallace, M.N., Johnston, P.W. & Palmer, A.R. Histochemical identification of cortical areas in the auditory region of the human brain. Exp. Brain Res. 143, 499–508 (2002).
    Article CAS Google Scholar
  30. Rademacher, J. et al. Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage 13, 669–683 (2001).
    Article CAS Google Scholar
  31. Morosan, P. et al. Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13, 684–701 (2001).
    Article CAS Google Scholar
  32. Steinmetz, H. et al. Cerebral asymmetry: MR planimetry of the human planum temporale. J. Comput. Assist. Tomogr. 13, 996–1005 (1989).
    Article CAS Google Scholar
  33. Penhune, V.B., Zatorre, R.J., MacDonald, J.D. & Evans, A.C. Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb. Cortex 6, 661–672 (1996).
    Article CAS Google Scholar
  34. Leonard, C.M., Puranik, C., Kuldau, J.M. & Lombardino, L.J. Normal variation in the frequency and location of human auditory cortex. Heschl's gyrus: where is it? Cereb. Cortex 8, 397–406 (1998).
    Article CAS Google Scholar
  35. Recanzone, G.H., Schreiner, C.E. & Merzenich, M.M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103 (1993).
    CAS PubMed Google Scholar
  36. Kilgard, P.M. & Merzenich, M.M. Plasticity of temporal information processing in the primary auditory cortex. Nat. Neurosci. 1, 727–731 (1998).
    Article CAS Google Scholar
  37. Gordon, E.E. Learning Sequences in Music (GIA, Chicago, Illinois, 1997).
  38. Scherg, M. in Auditory Evoked Magnetic Fields and Electric Potentials Vol. 6 (eds. Grandori, F., Hoke, M. & Romani, G. L.) 165–193 (Karger, Basel, Switzerland, 1990).
    Google Scholar
  39. Scherg, M. & von Cramon, D. Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr. Clin. Neurophysiol. 62, 32–44 (1985).
    Article CAS Google Scholar
  40. Schneider, P. Source Activity and Tonotopic Organization of the Auditory Cortex in Musicians and Non-musicians. Thesis, Univ. Heidelberg (2000).
  41. Talavage, T.M. et al. Frequency-dependent responses exhibited by multiple regions in human auditory cortex. Hear. Res. 150, 225–244 (2000).
    Article CAS Google Scholar
  42. Wessinger, C.M. et al. Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J. Cogn. Neurosci. 13, 1–7 (2001).
    Article CAS Google Scholar
  43. Zatorre, R. & Belin, P. Spectral and temporal processing in human auditory cortex. Cereb. Cortex 11, 946–953 (2001).
    Article CAS Google Scholar
  44. Meyer, A. in Music and the Brain (eds. Critchley, M. & Henson, R. A.) 255–281 (Heinemann, London, 1977).
    Book Google Scholar
  45. Somogyi, J. Über das morphologische Korrolat der musikalischen Fähigkeiten. Mschr. Psychat. Neurol. 75, 113–169 (1930).
    Google Scholar
  46. Menning, H., Roberts, L.E. & Pantev, C. Plastic changes in the auditory cortex induced by intensive frequency discrimination training. Neuroreport 11, 817–822 (2000).
    Article CAS Google Scholar
  47. Preis, S., Jäncke, L., Schmitz-Hillebrecht, J. & Steinmetz, H. Child age and planum temporale asymmetry. Brain Cogn. 40, 441–452 (1999).
    Article CAS Google Scholar
  48. Yakovlev, P.I. & Lecours, A.R. in Regional Development of the Brain in Early Life (ed. Minkowski, A.) 3–70 (Blackwell, Oxford, 1967).
    Google Scholar
  49. Monaghan, P., Metcalfe, N.B. & Ruxton, G.D. Does practice shape the brain? Nature 394, 434 (1998).
  50. Thompson, P.M. et al. Genetic influences on brain structure. Nat. Neurosci. 4, 1253–1258 (2001).
    Article CAS Google Scholar

Download references