High-yield production of graphene by liquid-phase exfoliation of graphite (original) (raw)
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater.6, 183–191 (2007). ArticleCAS Google Scholar
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature438, 197–200 (2005). ArticleCAS Google Scholar
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science306, 666–669 (2004). CAS Google Scholar
Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature438, 201–204 (2005). ArticleCAS Google Scholar
Pisana, S. et al. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature Mater.6, 198–201 (2007). ArticleCAS Google Scholar
Blake, P. et al. Graphene-based liquid crystal device. Nano Lett.8, 1704–1708 (2008). Article Google Scholar
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA102, 10451–10453 (2005). ArticleCAS Google Scholar
Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun.146, 351–355 (2008). ArticleCAS Google Scholar
Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett.1, 016602 (2008). Article Google Scholar
Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nature Nanotech.3, 491–495 (2008). ArticleCAS Google Scholar
Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science312, 1191–1196 (2006). ArticleCAS Google Scholar
Ohta, T. et al. Morphology of graphene thin film growth on SiC(0001). New J. Phys. 023034 (2008).
Zhou, S. Y. et al. Origin of the energy bandgap in epitaxial graphene—Reply. Nature Mater.7, 259–260 (2008). ArticleCAS Google Scholar
Marchini, S., Gunther, S. & Wintterlin, J. Scanning tunnelling microscopy of graphene on Ru(0001). Phys. Rev. B76, 075429 (2007). Article Google Scholar
de Parga, A. L. V. et al. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett.1, 056807 (2008). Article Google Scholar
Sutter, P. W., Flege, J.–I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nature Mater.7, 406–411 (2008). ArticleCAS Google Scholar
Pan, Y. et al. Millimetre-scale, highly ordered single crystalline graphene grown on Ru (0001) surface. ArXiv:0709.2858 (2008).
Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech.3, 270–274 (2008). ArticleCAS Google Scholar
Li, D. et al. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech.3, 101–105 (2008). ArticleCAS Google Scholar
Stankovich, S. et al. Graphene-based composite materials. Nature442, 282–286 (2006). ArticleCAS Google Scholar
Wang, X., Zhi, L. J. & Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett.8, 323–327 (2008). ArticleCAS Google Scholar
Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon45, 1558–1565 (2007). ArticleCAS Google Scholar
Jung, I. et al. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett.7, 3569–3575 (2007). ArticleCAS Google Scholar
Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys.30, 139–326 (1981). ArticleCAS Google Scholar
Viculis, L. M., Mack, J. J. & Kaner, R. B. A chemical route to carbon nanoscrolls. Science299, 1361–1361 (2003). ArticleCAS Google Scholar
Chen, G. H. et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon42, 753–759 (2004). ArticleCAS Google Scholar
Li, X. L. et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science319, 1229–1232 (2008). ArticleCAS Google Scholar
Niyogi, S. et al. Solution properties of graphite and graphene. J. Am. Chem. Soc.128, 7720–7721 (2006). ArticleCAS Google Scholar
Furtado, C. A. et al. Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J. Am. Chem. Soc.126, 6095–6105 (2004). ArticleCAS Google Scholar
Giordani, S. et al. Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. J. Phys. Chem. B110, 15708–15718 (2006). ArticleCAS Google Scholar
Landi, B. J., Ruf, H. J., Worman, J. J. & Raffaelle, R. P. Effects of alkyl amide solvents on the dispersion of single-wall carbon nanotubes. J. Phys. Chem. B108, 17089–17095 (2004). ArticleCAS Google Scholar
Hasan, T. et al. Stabilization and ‘Debundling’ of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). J. Phys. Chem. C111, 12594–12602 (2007). ArticleCAS Google Scholar
Bergin, S. D. et al. Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactone. Nanotechnology18, 455705 (2007). Article Google Scholar
Bergin, S. D. et al. Towards solutions of SWNT in common solvents. Adv. Mater.20, 1876–1881 (2007). Article Google Scholar
Abergel, D. S. L. & Fal'ko, V. I. Optical and magneto-optical far-infrared properties of bi-layer graphene. Phys. Rev. B75, 155430 (2007). Article Google Scholar
Hildebrand, J. H., Prausnitz, J. M. & Scott, R. L. Regular and related solutions 1st edn (Van Nostrand Reinhold Company, New York, 1970). Google Scholar
Lyklema, J. The surface tension of pure liquids—thermodynamic components and corresponding states. Coll. Surf. A156, 413–421 (1999). ArticleCAS Google Scholar
Tsierkezos, N. G. & Filippou, A. C. Thermodynamic investigation of N,N-dimethylformamide/toluene binary mixtures in the temperature range from 278.15 to 293.15 K. J. Chem. Therm.38, 952–961 (2006). ArticleCAS Google Scholar
Benedict, L. X. et al. Microscopic determination of the interlayer binding energy in graphite. Chem. Phys. Lett.286, 490–496 (1998). ArticleCAS Google Scholar
Girifalco, L. A. & Good, R. J. A theory for the estimation of surface and interfacial energies. 1. Derivation and application to interfacial tension. J. Phys. Chem.61, 904–909 (1957). ArticleCAS Google Scholar
Hodak, M. & Girifalco, L. A. Fullerenes inside carbon nanotubes and multi-walled carbon nanotubes: optimum and maximum sizes. Chem. Phys. Lett.350, 405–411 (2001). ArticleCAS Google Scholar
Zacharia, R., Ulbricht, H. & Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B69, 155406 (2004). Article Google Scholar
Jeong, S. H. et al. Preparation of aligned carbon nanotubes with prescribed dimensions: Template synthesis and sonication cutting approach. Chem. Mater.14, 1859–1862 (2002). ArticleCAS Google Scholar
Meyer, J. C. et al. The structure of suspended graphene sheets. Nature446, 60–63 (2007). ArticleCAS Google Scholar
Meyer, J. C. et al. On the roughness of single- and bi-layer graphene membranes. Solid State Commun.143, 101–109 (2007). ArticleCAS Google Scholar
Horiuchi, S. et al. Carbon nanofilm with a new structure and property. Jpn J. Appl. Phys. Lett.42, L1073–L1076 (2003). ArticleCAS Google Scholar
Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett.97, 187401 (2006). ArticleCAS Google Scholar
Blighe, F. M., Hernandez, Y., Blau, W. J. & Coleman, J. N. Observation of percolation-like scaling, far from the percolation threshold, in high volume fraction, high conductivity polymer–nanotube composite films. Adv. Mater.19, 4443–4447 (2007). ArticleCAS Google Scholar