Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective (original) (raw)

References

  1. Académie des Sciences, Académie des Technologies. Nanosciences - Nanotechnologies. Science and Technology Report No. 18 (French Academy of Sciences, 2004); summary of recommendations (in English) available at <http://www.tinyurl.com/nqwdda>.
  2. The Royal Society and The Royal Academy of Engineering. Nanoscience and Nanotechnology: Opportunities and Uncertainties (The Royal Society, 2004); available at <http://www.nanotec.org.uk>.
  3. Hansen, S. F., Larsen, B. H., Olsen, S. I. & Baun, A. Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 1, 243–250 (2007).
    CAS Google Scholar
  4. Nanoscale Science Engineering and Technology Subcommittee. The National Nanotechnology Initiative: Strategic Plan (US National Science and Technology Council, 2004); available at <http://www.nano.gov/NNI_Strategic_Plan_2004.pdf>.
  5. Donaldson, K., Stone, V., Tran, C. L., Kreyling, W. & Born, P. J. A. Nanotoxicology. Occup. Environ. Med. 61, 727–728 (2004).
    CAS Google Scholar
  6. Oberdörster, G., Oberdörster, E. & Oberdörster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839 (2005).
    Google Scholar
  7. Auffan, M. et al. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology 3, 161–171 (2009).
    CAS Google Scholar
  8. Carlson, C. et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B 112, 13608–13619 (2008).
    CAS Google Scholar
  9. Xia, T. et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6, 1794–1807 (2006).
    CAS Google Scholar
  10. Murdock, R. C., Braydich-Stolle, L., Schrand, A. M., Schlager, J. J. & Hussain, S. M. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci. 101, 239–253 (2008).
    CAS Google Scholar
  11. Billinge, S. J. L. & Levin, I. The problem with determining atomic structure at the nanoscale. Science 316, 561–565 (2007).
    CAS Google Scholar
  12. Bottero, J. Y., Rose, J. & Wiesner, M. R. Nanotechnologies: tools for sustainability in a new wave of water treatment processes. Integr. Environ. Assess. Manag. 2, 391–395 (2006).
    CAS Google Scholar
  13. Emerich, D. F. & Thanos, C. G. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol. Eng. 23, 171–184 (2006).
    CAS Google Scholar
  14. Gupta, A. K. & Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005).
    CAS Google Scholar
  15. Pereira de Abreu, D. A., Paseiro Losada, P., Angulo, I. & Cruz, J. M. Development of new polyolefin films with nanoclays for application in food packaging. Eur. Polym. J. 43, 2229–2243 (2007).
    CAS Google Scholar
  16. Zhang, W. Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res. 5, 323–332 (2003).
    CAS Google Scholar
  17. Sahoo, S. K. & Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today 8, 1112–1120 (2003).
    CAS Google Scholar
  18. Kim, C. K. et al. Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J. Am. Chem. Soc. 131, 1360–1361 (2009).
    CAS Google Scholar
  19. Xia, Y. Nanomaterials at work in biomedical research. Nature Mater. 7, 758–760 (2008).
    CAS Google Scholar
  20. Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006).
    CAS Google Scholar
  21. Wiesner, M. R., Lowry, G. V. & Alvarez, P. J. J. Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40, 4336–4345 (2006).
    CAS Google Scholar
  22. Lanone, S. & Boczkowski, J. Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr. Mol. Med. 6, 651–663 (2006).
    CAS Google Scholar
  23. Moore, M. N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int. 32, 967–976 (2006).
    CAS Google Scholar
  24. Fortner, J. D. et al. C60 in water: nanocrystal formation and microbial response. Environ. Sci. Technol. 39, 4307–4316 (2005).
    CAS Google Scholar
  25. Oberdörster, E. Manufactured nanomaterials (fullerene, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 112, 1058–1062 (2004).
    Google Scholar
  26. Auffan, M. et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity towards Escherichia Coli. Environ. Sci. Technol. 42, 6730–6735 (2008).
    CAS Google Scholar
  27. Auffan, M. et al. In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study. Environ. Sci. Technol. 40, 4367–4373 (2006).
    CAS Google Scholar
  28. Thill, A. et al. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. 40, 6151–6156 (2006).
    CAS Google Scholar
  29. Scheufele, D. A., Corley, E. A., Shih, T.-J., Dalrymple, K. E. & Ho, S. S. Religious beliefs and public attitudes toward nanotechnology in Europe and the United States. Nature Nanotech. 4, 91–94 (2009).
    CAS Google Scholar
  30. Lin, K.-F., Cheng, H.-M., Hsu, H.-C., Lin, L.-J. & Hsieh, W.-F. Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method. Chem. Phys. Lett. 409, 208–211 (2005).
    CAS Google Scholar
  31. Moreels, I. et al. Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chem. Mater. 19, 6101–6106 (2007).
    CAS Google Scholar
  32. Norris, D. J. & Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 53, 16338–16346 (1996).
    CAS Google Scholar
  33. Wang, Y. & Herron, N. Quantum size effects on the exciton energy of CdS clusters. Phys. Rev. B 42, 7253–7255 (1990).
    CAS Google Scholar
  34. Lai, S. L., Guo, J. Y., Petrova, V., Ramanath, G. & Allen, L. H. Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys. Rev. Lett. 77, 99–102 (1996).
    CAS Google Scholar
  35. Tang, Z. X., Sorensen, C. M., Klabunde, K. J. & Hadjipanayis, G. C. Size-dependent Curie temperature in nanoscale MnFe2O4 particles. Phys. Rev. Lett. 67, 3602–3605 (1991).
    CAS Google Scholar
  36. Jolivet, J. P. et al. Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling. J. Mater. Chem. 14, 3281–3288 (2004).
    CAS Google Scholar
  37. Lamber, R., Wetjen, S. & Jaeger, N. I. Size dependence of the lattice parameter of small palladium particles. Phys. Rev. B 51, 10968–10971 (1995).
    CAS Google Scholar
  38. Ayyub, P., Palkar, V. R., Chattopadhyay, S. & Multani, M. Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B 51, 6135–6138 (1995).
    CAS Google Scholar
  39. Banfield, J. F. & Navrotsky, A. (eds) Nanoparticles and the Environment (Mineralogical Society of America, 2001).
    Google Scholar
  40. Brice-Profeta, S. et al. Magnetic order in γFe2O3 nanoparticles: a XMCD study. J. Magn. Magn. Mater. 288, 354–365 (2005).
    CAS Google Scholar
  41. Baudrin, E. et al. Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature. Electrochem. Commun. 9, 337–342 (2007).
    CAS Google Scholar
  42. Hwang, Y.-N., Park, S.-H. & Kim, D. Size-dependent surface phonon mode of CdSe quantum dots. Phys. Rev. B 59, 7285–7288 (1999).
    CAS Google Scholar
  43. Alivisatos, A. P. Semiconductor clusters, nanocrystals and quantum dots. Science 271, 933–937 (1996).
    CAS Google Scholar
  44. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).
    CAS Google Scholar
  45. Pottier, A. S. et al. Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy. J. Mater. Chem. 13, 877–882 (2003).
    CAS Google Scholar
  46. Chernyshev, A. P. Effect of nanoparticle size on the onset temperature of surface melting. Mater. Lett. 63, 1525–1527 (2009).
    CAS Google Scholar
  47. Zhang, M. et al. Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B 62, 10548–10557 (2000).
    CAS Google Scholar
  48. Sun, J. & Simon, S. L. The melting behavior of aluminium nanoparticles. Thermochim. Acta 463, 32–40 (2007).
    CAS Google Scholar
  49. Dormann, J. L., Fiorani, D. & Tronc, E. Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 283–494 (1997).
    CAS Google Scholar
  50. Gangopadhyay, S. et al. Magnetic properties of ultrafine iron particles. Phys. Rev. B 45, 9778–9787 (1992).
    CAS Google Scholar
  51. Pastor, G. M., Dorantesdavila, J. & Bennemann, K. H. Size and structural dependence of the magnetic properties of small 3d-transition-metal clusters. Phys. Rev. B 40, 7642–7654 (1989).
    CAS Google Scholar
  52. Chen, Q. & Zhang, Z. J. Size-dependent superparamagnetic properties of MgFe2O4 spinel ferrite nanocrystallites. Appl. Phys. Lett. 73, 3156–3158 (1998).
    CAS Google Scholar
  53. Selbach, S. M., Tybell, T., Einarsrud, M. A. & Grande, T. Size-dependent properties of multiferroic BiFeO3 manoparticles. Chem. Mater. 19, 6478–6484 (2007).
    CAS Google Scholar
  54. Shetty, S., Palkar, V. R. & Pinto, R. Size effect study in magnetoelectric BiFeO3 system. Pramana 58, 1027–1030 (2002).
    CAS Google Scholar
  55. Chattopadhyay, S., Ayyub, P., Palkar, V. R. & Multani, M. Size-induced diffuse phase transition in the nanocrystalline ferroelectric PbTiO3 . Phys. Rev. B 52, 13177–13183 (1995).
    CAS Google Scholar
  56. Shih, W. Y., Shih, W.-H. & Aksay, I. A. Size dependence of the ferroelectric transition of small BaTiO3 particles: effect of depolarization. Phys. Rev. B 50, 15575–15585 (1994).
    CAS Google Scholar
  57. Rusanov, A. I. Surface thermodynamics revisited. Surf. Sci. Rep. 58, 111–239 (2005).
    CAS Google Scholar
  58. Borm, P. et al. Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 90, 23–32 (2006).
    CAS Google Scholar
  59. Fan, C., Chen, J., Chen, Y., Ji, J. & Teng, H. H. Relationship between solubility and solubility product: the roles of crystal sizes and crystallographic directions. Geochim. Cosmochim. Acta 70, 3820–3829 (2006).
    CAS Google Scholar
  60. Talapin, D. V., Rogach, A. L., Haase, M. & Weller, H. Evolution of an ensemble of nanoparticles in a colloidal solution: theoretical study. J. Phys. Chem. B 105, 12278–12285 (2001).
    CAS Google Scholar
  61. Rogach, A. L. et al. Organization of matter on different size scales: monodisperse nanocrystals and their superstructures. Adv. Funct. Mater. 12, 653–664 (2002).
    CAS Google Scholar
  62. McHale, J. M., Auroux, A., Perrotta, A. J. & Navrotsky, A. Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277, 788–791 (1997).
    CAS Google Scholar
  63. Zhang, H. & Banfield, J. F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2 . J. Phys. Chem. B 104, 3481–3487 (2000).
    CAS Google Scholar
  64. Ranade, M. R. et al. Energetics of nanocrystalline TiO2 . Proc. Natl Acad. Sci. USA 99, 6476–6481 (2002).
    CAS Google Scholar
  65. Gratton, S. E. et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105, 11613–11618 (2008).
    CAS Google Scholar
  66. Jiang, W., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotech. 3, 145–150 (2008).
    CAS Google Scholar
  67. Tao, F. et al. Reaction-driven restructuring of Rh–Pd and Pt–Pd core-shell nanoparticles. Science 322, 932–934 (2008).
    CAS Google Scholar
  68. Auffan, M. et al. Enhanced adsorption of arsenic onto nano-maghemites: As(III) as a probe of the surface structure and heterogeneity. Langmuir 24, 3215–3222 (2008).
    CAS Google Scholar
  69. Hoyer, P. & Weller, H. Size-dependent redox potentials of quantized zinc oxide measured with an optically transparent thin layer electrode. Chem. Phys. Lett. 221, 379–384 (1994).
    CAS Google Scholar
  70. Yokoyama, A., Komiyama, H., Inoue, H., Masumoto, T. & Kimura, H. M. Hydrogenation of carbon monoxide by amorphous ribbons. J. Catalys. 68, 355–361 (1981).
    CAS Google Scholar
  71. Liu, Y., Choi, H., Dionysiou, D. & Lowry, G. V. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chem. Mater. 17, 5315–5322 (2005).
    CAS Google Scholar
  72. Nurmi, J. T. et al. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry and kinetics. Environ. Sci. Technol. 39, 1221–1230 (2005).
    CAS Google Scholar
  73. Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S. & Lowry, G. V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 39, 1338–1345 (2005).
    CAS Google Scholar
  74. Jolivet, J. P. & Barron, A. R. in Environmental Nanotechnology — Applications and Impacts of Nano-materials (eds Wiesner, M. R. & Bottero, J. Y.) 29–103 (McGraw Hill, 2007).
    Google Scholar
  75. Banus, E. D., Milt, V. G., Miro, E. E. & Ulla, M. A. Structured catalyst for the catalytic combustion of soot: Co, Ba, K/ZrO2 supported on Al2O3 foam. Appl. Catalys. A 362, 129–138 (2009).
    CAS Google Scholar
  76. Martinez, A., Prieto, G. & Rollan, J. Nanofibrous γ-Al2O3 as support for Co-based Fischer-Tropsch catalysts: Pondering the relevance of diffusional and dispersion effects on catalytic performance. J. Catalys. 263, 292–305 (2009).
    CAS Google Scholar
  77. Euzen, P. et al. in Handbook of Porous Materials (eds Schuth, F., Sing, K. S. W. & Weitkamp, J.) 1591–1677 (Wiley-VCH, 2002).
    Google Scholar
  78. Maira, A. J., Yeung, K. L., Lee, C. Y., Yue, P. L. & Chan, C. K. Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J. Catalys. 192, 185–196 (2000).
    CAS Google Scholar
  79. Wang, C. C., Zhang, Z. & Ying, J. Y. Photocatalytic decomposition of halogenated organics over nanocrystalline titania. Nanostruct. Mater. 9, 583–586 (1997).
    CAS Google Scholar
  80. Almquist, C. B. & Biswas, P. Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J. Catalys. 212, 145–156 (2002).
    CAS Google Scholar
  81. Santra, A. K. & Goodman, D. W. Oxide-supported metal clusters: models for heterogeneous catalysts. J. Phys. Condens. Matter 15, R31–R62 (2003).
    CAS Google Scholar
  82. Daniel, M. C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties and applications toward biology, catalysis and nanotechnology. Chem. Rev. 104, 293–346 (2004).
    CAS Google Scholar
  83. Haruta, M. Size- and support-dependency in the catalysis of gold. Catalys. Today 36, 153–166 (1997).
    CAS Google Scholar
  84. Sau, T. K., Pal, A. & Pal, T. Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J. Phys. Chem. B 105, 9266–9272 (2001).
    CAS Google Scholar
  85. Cortie, M. B. & Van der Lingen, E. Catalytic gold nanoparticles. Mater. Forum 26, 1–14 (2002).
    CAS Google Scholar
  86. Turner, M. et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–983 (2008).
    CAS Google Scholar
  87. Miller, J. T. et al. The effect of gold particle size on Au–Au bond length and reactivity toward oxygen in supported catalysts. J. Catalys. 240, 222–234 (2006).
    CAS Google Scholar
  88. Madden, A. S., Hochella, M. F. & Luxton, T. P. Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2 sorption. Geochim. Cosmochim. Acta 70, 4095–4104 (2006).
    CAS Google Scholar
  89. Villiéras, F. et al. Surface heterogeneity of minerals. C. R. Geosci. 334, 597–609 (2002).
    Google Scholar
  90. Yean, S. et al. Effect of magnetic particle size on adsorption and desorption of arsenite and arsenate. J. Mater. Res. 20, 3255–3264 (2005).
    CAS Google Scholar
  91. Stumm, W. & Morgan, J. J. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters 2nd edn (Wiley-Interscience, 1981).
    Google Scholar
  92. Sigg, L., Behra, P. & Stumm, G. N. Chimie des Milieux Aquatiques, Chimie des Eaux Naturelles et des Interfaces dans l'Environnement (Dunod, 2000).
    Google Scholar
  93. Navrotsky, A., Mazeina, L. & Majzlan, J. Size-driven structural and thermodynamic complexity in iron oxides. Science 319, 1635–1638 (2008).
    CAS Google Scholar
  94. Jolivet, J. P. & Tronc, E. Interfacial electron transfer in colloidal spinel iron oxide. Conversion of Fe3O4-γ-Fe2O3 particles in aqueous medium. J. Colloid Interface Sci. 125, 688–701 (1988).
    CAS Google Scholar
  95. Gurr, J.-R., Wang, A. S. S., Chen, C.-H. & Jan, K.-Y. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213, 66–73 (2005).
    CAS Google Scholar
  96. Warheit, D. B., Webb, T. R., Sayes, C. M., Colvin, V. L. & Reed, K. L. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol. Sci. 91, 227–236 (2006).
    CAS Google Scholar
  97. Hirakawa, K., Mori, M., Yoshida, M., Oikawa, S. & Kawanishi, S. Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radic. Res. 38, 439–447 (2004).
    CAS Google Scholar
  98. Sato, T. & Taya, M. Enhancement of phage inactivation using photocatalytic titanium dioxide particles with different crystalline structures. Biochem. Eng. J. 28, 303–308 (2006).
    CAS Google Scholar
  99. Jang, H. D., Kim, S.-K. & Kim, S.-J. Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J. Nanopart. Res. 3, 141–147 (2001).
    CAS Google Scholar
  100. Braydich-Stolle, L. et al. Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J. Nanopart. Res. 11, 1361–1374 (2009).
    CAS Google Scholar
  101. Auffan, M., Rose, J., Wiesner, M. R. & Bottero, J. Y. Chemical stability of metallic nanoparticles: a parameter controlling their potential toxicity in vitro. Environ. Pollut. 157, 1127–1133 (2009).
    CAS Google Scholar
  102. Brunner, T. J. et al. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 40, 4374–4381 (2006).
    CAS Google Scholar
  103. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (US National Association of Corrosion Engineers, 1974).
    Google Scholar
  104. Franklin, N. M. et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 41, 8484–8490 (2007).
    CAS Google Scholar
  105. Derfus, A. M., Chan, W. C. W. & Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004).
    CAS Google Scholar
  106. Morones, J. R. et al. The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353 (2005).
    CAS Google Scholar
  107. Wang, S. et al. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem. Phys. Lett. 463, 145–149 (2008).
    CAS Google Scholar
  108. Park, E. J., Choi, J., Park, Y. K. & Park, K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245, 90–100 (2008).
    CAS Google Scholar

Download references