Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective (original) (raw)
References
Académie des Sciences, Académie des Technologies. Nanosciences - Nanotechnologies. Science and Technology Report No. 18 (French Academy of Sciences, 2004); summary of recommendations (in English) available at <http://www.tinyurl.com/nqwdda>.
The Royal Society and The Royal Academy of Engineering. Nanoscience and Nanotechnology: Opportunities and Uncertainties (The Royal Society, 2004); available at <http://www.nanotec.org.uk>.
Hansen, S. F., Larsen, B. H., Olsen, S. I. & Baun, A. Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology1, 243–250 (2007). CAS Google Scholar
Nanoscale Science Engineering and Technology Subcommittee. The National Nanotechnology Initiative: Strategic Plan (US National Science and Technology Council, 2004); available at <http://www.nano.gov/NNI_Strategic_Plan_2004.pdf>.
Donaldson, K., Stone, V., Tran, C. L., Kreyling, W. & Born, P. J. A. Nanotoxicology. Occup. Environ. Med.61, 727–728 (2004). CAS Google Scholar
Oberdörster, G., Oberdörster, E. & Oberdörster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect.113, 823–839 (2005). Google Scholar
Auffan, M. et al. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology3, 161–171 (2009). CAS Google Scholar
Carlson, C. et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B112, 13608–13619 (2008). CAS Google Scholar
Xia, T. et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett.6, 1794–1807 (2006). CAS Google Scholar
Murdock, R. C., Braydich-Stolle, L., Schrand, A. M., Schlager, J. J. & Hussain, S. M. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci.101, 239–253 (2008). CAS Google Scholar
Billinge, S. J. L. & Levin, I. The problem with determining atomic structure at the nanoscale. Science316, 561–565 (2007). CAS Google Scholar
Bottero, J. Y., Rose, J. & Wiesner, M. R. Nanotechnologies: tools for sustainability in a new wave of water treatment processes. Integr. Environ. Assess. Manag.2, 391–395 (2006). CAS Google Scholar
Emerich, D. F. & Thanos, C. G. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol. Eng.23, 171–184 (2006). CAS Google Scholar
Gupta, A. K. & Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials26, 3995–4021 (2005). CAS Google Scholar
Pereira de Abreu, D. A., Paseiro Losada, P., Angulo, I. & Cruz, J. M. Development of new polyolefin films with nanoclays for application in food packaging. Eur. Polym. J.43, 2229–2243 (2007). CAS Google Scholar
Zhang, W. Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res.5, 323–332 (2003). CAS Google Scholar
Sahoo, S. K. & Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today8, 1112–1120 (2003). CAS Google Scholar
Kim, C. K. et al. Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J. Am. Chem. Soc.131, 1360–1361 (2009). CAS Google Scholar
Xia, Y. Nanomaterials at work in biomedical research. Nature Mater.7, 758–760 (2008). CAS Google Scholar
Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel. Science311, 622–627 (2006). CAS Google Scholar
Wiesner, M. R., Lowry, G. V. & Alvarez, P. J. J. Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol.40, 4336–4345 (2006). CAS Google Scholar
Lanone, S. & Boczkowski, J. Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr. Mol. Med.6, 651–663 (2006). CAS Google Scholar
Moore, M. N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int.32, 967–976 (2006). CAS Google Scholar
Fortner, J. D. et al. C60 in water: nanocrystal formation and microbial response. Environ. Sci. Technol.39, 4307–4316 (2005). CAS Google Scholar
Oberdörster, E. Manufactured nanomaterials (fullerene, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect.112, 1058–1062 (2004). Google Scholar
Auffan, M. et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity towards Escherichia Coli. Environ. Sci. Technol.42, 6730–6735 (2008). CAS Google Scholar
Auffan, M. et al. In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study. Environ. Sci. Technol.40, 4367–4373 (2006). CAS Google Scholar
Thill, A. et al. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol.40, 6151–6156 (2006). CAS Google Scholar
Scheufele, D. A., Corley, E. A., Shih, T.-J., Dalrymple, K. E. & Ho, S. S. Religious beliefs and public attitudes toward nanotechnology in Europe and the United States. Nature Nanotech.4, 91–94 (2009). CAS Google Scholar
Lin, K.-F., Cheng, H.-M., Hsu, H.-C., Lin, L.-J. & Hsieh, W.-F. Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method. Chem. Phys. Lett.409, 208–211 (2005). CAS Google Scholar
Moreels, I. et al. Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chem. Mater.19, 6101–6106 (2007). CAS Google Scholar
Norris, D. J. & Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B53, 16338–16346 (1996). CAS Google Scholar
Wang, Y. & Herron, N. Quantum size effects on the exciton energy of CdS clusters. Phys. Rev. B42, 7253–7255 (1990). CAS Google Scholar
Lai, S. L., Guo, J. Y., Petrova, V., Ramanath, G. & Allen, L. H. Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys. Rev. Lett.77, 99–102 (1996). CAS Google Scholar
Tang, Z. X., Sorensen, C. M., Klabunde, K. J. & Hadjipanayis, G. C. Size-dependent Curie temperature in nanoscale MnFe2O4 particles. Phys. Rev. Lett.67, 3602–3605 (1991). CAS Google Scholar
Jolivet, J. P. et al. Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling. J. Mater. Chem.14, 3281–3288 (2004). CAS Google Scholar
Lamber, R., Wetjen, S. & Jaeger, N. I. Size dependence of the lattice parameter of small palladium particles. Phys. Rev. B51, 10968–10971 (1995). CAS Google Scholar
Ayyub, P., Palkar, V. R., Chattopadhyay, S. & Multani, M. Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B51, 6135–6138 (1995). CAS Google Scholar
Banfield, J. F. & Navrotsky, A. (eds) Nanoparticles and the Environment (Mineralogical Society of America, 2001). Google Scholar
Brice-Profeta, S. et al. Magnetic order in γFe2O3 nanoparticles: a XMCD study. J. Magn. Magn. Mater.288, 354–365 (2005). CAS Google Scholar
Baudrin, E. et al. Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature. Electrochem. Commun.9, 337–342 (2007). CAS Google Scholar
Hwang, Y.-N., Park, S.-H. & Kim, D. Size-dependent surface phonon mode of CdSe quantum dots. Phys. Rev. B59, 7285–7288 (1999). CAS Google Scholar
Alivisatos, A. P. Semiconductor clusters, nanocrystals and quantum dots. Science271, 933–937 (1996). CAS Google Scholar
Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment. J. Phys. Chem. B107, 668–677 (2003). CAS Google Scholar
Pottier, A. S. et al. Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy. J. Mater. Chem.13, 877–882 (2003). CAS Google Scholar
Chernyshev, A. P. Effect of nanoparticle size on the onset temperature of surface melting. Mater. Lett.63, 1525–1527 (2009). CAS Google Scholar
Zhang, M. et al. Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B62, 10548–10557 (2000). CAS Google Scholar
Sun, J. & Simon, S. L. The melting behavior of aluminium nanoparticles. Thermochim. Acta463, 32–40 (2007). CAS Google Scholar
Dormann, J. L., Fiorani, D. & Tronc, E. Magnetic relaxation in fine-particle systems. Adv. Chem. Phys.98, 283–494 (1997). CAS Google Scholar
Gangopadhyay, S. et al. Magnetic properties of ultrafine iron particles. Phys. Rev. B45, 9778–9787 (1992). CAS Google Scholar
Pastor, G. M., Dorantesdavila, J. & Bennemann, K. H. Size and structural dependence of the magnetic properties of small 3d-transition-metal clusters. Phys. Rev. B40, 7642–7654 (1989). CAS Google Scholar
Chen, Q. & Zhang, Z. J. Size-dependent superparamagnetic properties of MgFe2O4 spinel ferrite nanocrystallites. Appl. Phys. Lett.73, 3156–3158 (1998). CAS Google Scholar
Selbach, S. M., Tybell, T., Einarsrud, M. A. & Grande, T. Size-dependent properties of multiferroic BiFeO3 manoparticles. Chem. Mater.19, 6478–6484 (2007). CAS Google Scholar
Shetty, S., Palkar, V. R. & Pinto, R. Size effect study in magnetoelectric BiFeO3 system. Pramana58, 1027–1030 (2002). CAS Google Scholar
Chattopadhyay, S., Ayyub, P., Palkar, V. R. & Multani, M. Size-induced diffuse phase transition in the nanocrystalline ferroelectric PbTiO3 . Phys. Rev. B52, 13177–13183 (1995). CAS Google Scholar
Shih, W. Y., Shih, W.-H. & Aksay, I. A. Size dependence of the ferroelectric transition of small BaTiO3 particles: effect of depolarization. Phys. Rev. B50, 15575–15585 (1994). CAS Google Scholar
Rusanov, A. I. Surface thermodynamics revisited. Surf. Sci. Rep.58, 111–239 (2005). CAS Google Scholar
Borm, P. et al. Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci.90, 23–32 (2006). CAS Google Scholar
Fan, C., Chen, J., Chen, Y., Ji, J. & Teng, H. H. Relationship between solubility and solubility product: the roles of crystal sizes and crystallographic directions. Geochim. Cosmochim. Acta70, 3820–3829 (2006). CAS Google Scholar
Talapin, D. V., Rogach, A. L., Haase, M. & Weller, H. Evolution of an ensemble of nanoparticles in a colloidal solution: theoretical study. J. Phys. Chem. B105, 12278–12285 (2001). CAS Google Scholar
Rogach, A. L. et al. Organization of matter on different size scales: monodisperse nanocrystals and their superstructures. Adv. Funct. Mater.12, 653–664 (2002). CAS Google Scholar
McHale, J. M., Auroux, A., Perrotta, A. J. & Navrotsky, A. Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science277, 788–791 (1997). CAS Google Scholar
Zhang, H. & Banfield, J. F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2 . J. Phys. Chem. B104, 3481–3487 (2000). CAS Google Scholar
Ranade, M. R. et al. Energetics of nanocrystalline TiO2 . Proc. Natl Acad. Sci. USA99, 6476–6481 (2002). CAS Google Scholar
Gratton, S. E. et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA105, 11613–11618 (2008). CAS Google Scholar
Jiang, W., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotech.3, 145–150 (2008). CAS Google Scholar
Tao, F. et al. Reaction-driven restructuring of Rh–Pd and Pt–Pd core-shell nanoparticles. Science322, 932–934 (2008). CAS Google Scholar
Auffan, M. et al. Enhanced adsorption of arsenic onto nano-maghemites: As(III) as a probe of the surface structure and heterogeneity. Langmuir24, 3215–3222 (2008). CAS Google Scholar
Hoyer, P. & Weller, H. Size-dependent redox potentials of quantized zinc oxide measured with an optically transparent thin layer electrode. Chem. Phys. Lett.221, 379–384 (1994). CAS Google Scholar
Yokoyama, A., Komiyama, H., Inoue, H., Masumoto, T. & Kimura, H. M. Hydrogenation of carbon monoxide by amorphous ribbons. J. Catalys.68, 355–361 (1981). CAS Google Scholar
Liu, Y., Choi, H., Dionysiou, D. & Lowry, G. V. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chem. Mater.17, 5315–5322 (2005). CAS Google Scholar
Nurmi, J. T. et al. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry and kinetics. Environ. Sci. Technol.39, 1221–1230 (2005). CAS Google Scholar
Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S. & Lowry, G. V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol.39, 1338–1345 (2005). CAS Google Scholar
Jolivet, J. P. & Barron, A. R. in Environmental Nanotechnology — Applications and Impacts of Nano-materials (eds Wiesner, M. R. & Bottero, J. Y.) 29–103 (McGraw Hill, 2007). Google Scholar
Banus, E. D., Milt, V. G., Miro, E. E. & Ulla, M. A. Structured catalyst for the catalytic combustion of soot: Co, Ba, K/ZrO2 supported on Al2O3 foam. Appl. Catalys. A362, 129–138 (2009). CAS Google Scholar
Martinez, A., Prieto, G. & Rollan, J. Nanofibrous γ-Al2O3 as support for Co-based Fischer-Tropsch catalysts: Pondering the relevance of diffusional and dispersion effects on catalytic performance. J. Catalys.263, 292–305 (2009). CAS Google Scholar
Euzen, P. et al. in Handbook of Porous Materials (eds Schuth, F., Sing, K. S. W. & Weitkamp, J.) 1591–1677 (Wiley-VCH, 2002). Google Scholar
Maira, A. J., Yeung, K. L., Lee, C. Y., Yue, P. L. & Chan, C. K. Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J. Catalys.192, 185–196 (2000). CAS Google Scholar
Wang, C. C., Zhang, Z. & Ying, J. Y. Photocatalytic decomposition of halogenated organics over nanocrystalline titania. Nanostruct. Mater.9, 583–586 (1997). CAS Google Scholar
Almquist, C. B. & Biswas, P. Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J. Catalys.212, 145–156 (2002). CAS Google Scholar
Santra, A. K. & Goodman, D. W. Oxide-supported metal clusters: models for heterogeneous catalysts. J. Phys. Condens. Matter15, R31–R62 (2003). CAS Google Scholar
Daniel, M. C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties and applications toward biology, catalysis and nanotechnology. Chem. Rev.104, 293–346 (2004). CAS Google Scholar
Haruta, M. Size- and support-dependency in the catalysis of gold. Catalys. Today36, 153–166 (1997). CAS Google Scholar
Sau, T. K., Pal, A. & Pal, T. Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J. Phys. Chem. B105, 9266–9272 (2001). CAS Google Scholar
Cortie, M. B. & Van der Lingen, E. Catalytic gold nanoparticles. Mater. Forum26, 1–14 (2002). CAS Google Scholar
Turner, M. et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature454, 981–983 (2008). CAS Google Scholar
Miller, J. T. et al. The effect of gold particle size on Au–Au bond length and reactivity toward oxygen in supported catalysts. J. Catalys.240, 222–234 (2006). CAS Google Scholar
Madden, A. S., Hochella, M. F. & Luxton, T. P. Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2 sorption. Geochim. Cosmochim. Acta70, 4095–4104 (2006). CAS Google Scholar
Villiéras, F. et al. Surface heterogeneity of minerals. C. R. Geosci.334, 597–609 (2002). Google Scholar
Yean, S. et al. Effect of magnetic particle size on adsorption and desorption of arsenite and arsenate. J. Mater. Res.20, 3255–3264 (2005). CAS Google Scholar
Stumm, W. & Morgan, J. J. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters 2nd edn (Wiley-Interscience, 1981). Google Scholar
Sigg, L., Behra, P. & Stumm, G. N. Chimie des Milieux Aquatiques, Chimie des Eaux Naturelles et des Interfaces dans l'Environnement (Dunod, 2000). Google Scholar
Navrotsky, A., Mazeina, L. & Majzlan, J. Size-driven structural and thermodynamic complexity in iron oxides. Science319, 1635–1638 (2008). CAS Google Scholar
Jolivet, J. P. & Tronc, E. Interfacial electron transfer in colloidal spinel iron oxide. Conversion of Fe3O4-γ-Fe2O3 particles in aqueous medium. J. Colloid Interface Sci.125, 688–701 (1988). CAS Google Scholar
Gurr, J.-R., Wang, A. S. S., Chen, C.-H. & Jan, K.-Y. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology213, 66–73 (2005). CAS Google Scholar
Warheit, D. B., Webb, T. R., Sayes, C. M., Colvin, V. L. & Reed, K. L. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol. Sci.91, 227–236 (2006). CAS Google Scholar
Hirakawa, K., Mori, M., Yoshida, M., Oikawa, S. & Kawanishi, S. Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radic. Res.38, 439–447 (2004). CAS Google Scholar
Sato, T. & Taya, M. Enhancement of phage inactivation using photocatalytic titanium dioxide particles with different crystalline structures. Biochem. Eng. J.28, 303–308 (2006). CAS Google Scholar
Jang, H. D., Kim, S.-K. & Kim, S.-J. Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J. Nanopart. Res.3, 141–147 (2001). CAS Google Scholar
Braydich-Stolle, L. et al. Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J. Nanopart. Res.11, 1361–1374 (2009). CAS Google Scholar
Auffan, M., Rose, J., Wiesner, M. R. & Bottero, J. Y. Chemical stability of metallic nanoparticles: a parameter controlling their potential toxicity in vitro. Environ. Pollut.157, 1127–1133 (2009). CAS Google Scholar
Brunner, T. J. et al. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol.40, 4374–4381 (2006). CAS Google Scholar
Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (US National Association of Corrosion Engineers, 1974). Google Scholar
Franklin, N. M. et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol.41, 8484–8490 (2007). CAS Google Scholar
Derfus, A. M., Chan, W. C. W. & Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett.4, 11–18 (2004). CAS Google Scholar
Morones, J. R. et al. The bactericidal effect of silver nanoparticles. Nanotechnology16, 2346–2353 (2005). CAS Google Scholar
Wang, S. et al. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem. Phys. Lett.463, 145–149 (2008). CAS Google Scholar
Park, E. J., Choi, J., Park, Y. K. & Park, K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology245, 90–100 (2008). CAS Google Scholar