Identifying single nucleotides by tunnelling current (original) (raw)

References

  1. Collins, F. S., Green, A. E., Guttmacher, A. E. & Guyer, M. S. A vision for the future of genomics research. Nature 422, 835–847 (2003).
    Article CAS Google Scholar
  2. Schloss, J. A. How to get genomes at one ten-thousandth the cost. Nature Biotechnol. 26, 1113–1115 (2008).
    Article CAS Google Scholar
  3. Dekker, C. Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007).
    Article CAS Google Scholar
  4. Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotechnol. 26, 1146–1153 (2008).
    Article CAS Google Scholar
  5. Zwolak, M. & Di Ventra, M. Colloquim: physical approaches to DNA sequencing and detection. Rev. Mod. Phys. 80, 141–165 (2008).
    Article Google Scholar
  6. Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotech. 4, 265–270 (2009).
    Article CAS Google Scholar
  7. Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G. & Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl Acad. Sci. USA 106, 7702–7707 (2009).
    Article CAS Google Scholar
  8. Fologea, D. et al. Detecting single stranded DNA with a solid state nanopore. Nano Lett. 5, 1905–1909 (2005).
    Article CAS Google Scholar
  9. Keyser, U. F. et al. Direct force measurements on DNA in a solid-state nanopore. Nature Phys. 2, 473–477 (2006).
    Article CAS Google Scholar
  10. Gershow, M. & Golovchenko, J. A. Recapturing and trapping single molecules with a solid-state nanopore. Nature Nanotech. 2, 775–779 (2007).
    Article CAS Google Scholar
  11. van Dorp, S., Keyser, U. F., Dekker, N. H., Dekker, C. & Lemay, S. G. Origin of the electrophoretic force on DNA in solid-state nanopores. Nature Phys. 5, 347–351 (2009).
    Article CAS Google Scholar
  12. Lagerqvist, J., Zwolak, M. & Di Ventra, M. Fast DNA sequencing via transverse electronic transport. Nano Lett. 6, 779–782 (2006).
    Article CAS Google Scholar
  13. Lagerqvist, J., Zwolak, M. & Di Ventra, M. Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport. Biophys. J. 93, 2384–2390 (2007).
    Article CAS Google Scholar
  14. He, J., Lin, L., Zhang, P. & Lindsay, S. Identification of DNA basepairing via tunnel-current decay. Nano Lett. 7, 3854–3858 (2007).
    Article CAS Google Scholar
  15. Chang, S. et al. Tunnelling readout of hydrogen-bonding-based recognition. Nature Nanotech. 4, 297–301 (2009).
    Article CAS Google Scholar
  16. Fischbein, M. D. & Drndic, M. Sub-10 nm device fabrication in a transmission electron microscope. Nano Lett. 7, 1329–1337 (2007).
    Article CAS Google Scholar
  17. Liang, X. & Chou, S. Y. Nanogap detector inside nanofluidic channel for real-time label-free DNA analysis. Nano Lett. 8, 1472–1476 (2008).
    Article CAS Google Scholar
  18. Maleki, T., Mohammadi, S. & Ziaie, B. A nanofluidic channel with embedded transverse nanoelectrodes. Nanotechnology 20, 105302 (2009).
    Article CAS Google Scholar
  19. Tsutsui, M., Taniguchi, M. & Kawai, T. Transverse field effects on DNA-sized particle dynamics. Nano Lett. 9, 1659–1662 (2009).
    Article CAS Google Scholar
  20. Tsutsui, M., Taniguchi, M. & Kawai, T. Fabrication of 0.5 nm electrode gaps using self-breaking technique. Appl. Phys. Lett. 93, 163115 (2008).
    Article Google Scholar
  21. Frisch, M. J. et al. Gaussian03, revisionC.02. (Gaussian, Inc., 2003).
    Google Scholar
  22. Troisi, A. & Ratner, M. A. Molecular signatures in the transport properties of molecular wire junctions: what makes a junction ‘molecular’? Small 2, 172–181 (2006).
    Article CAS Google Scholar
  23. Simmons, J. G. Generalized formula for the electronic tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).
    Article Google Scholar
  24. Wang, W., Lee, T. & Reed, M. A. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68, 035416 (2003).
    Article Google Scholar
  25. Kundu, J. et al. Adenine- and adenosine monophosphate (AMP)–gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies. J. Phys. Chem. C 113, 14390–14397 (2009).
    Article CAS Google Scholar
  26. Brown, K. A., Park, S. & Hamad-Schifferli, K. Nucleotide–surface interactions in DNA-modified Au–nanoparticle conjugates: sequence effects on reactivity and hybridization. J. Phys. Chem. C 112, 7517–7521 (2008).
    Article CAS Google Scholar
  27. Taniguchi, M. & Kawai, T. DNA electronics. Physica E 33, 1–12 (2006).
    Article CAS Google Scholar
  28. Peng, H. & Ling, X. S. Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology 20, 185101 (2009).
    Article Google Scholar
  29. Agraït, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).
    Article Google Scholar
  30. Tsutsui, M., Shoji, K., Taniguchi, M. & Kawai, T. Formation and self-breaking mechanism of stable atom-sized junctions. Nano Lett. 8, 345–349 (2008).
    Article CAS Google Scholar

Download references