Single-molecule transport across an individual biomimetic nuclear pore complex (original) (raw)

References

  1. Alberts, B. et al. Molecular Biology of the Cell 5th edn (Garland Science, 2008).
    Google Scholar
  2. Jovanovic-Talisman, T. et al. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature 457, 1023–1027 (2009).
    Article CAS Google Scholar
  3. Dekker, C. Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007).
    Article CAS Google Scholar
  4. Wente, S. R. Gatekeepers of the nucleus. Science 288, 1374–1377 (2000).
    Article CAS Google Scholar
  5. Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature 450, 695–701 (2007).
    Article CAS Google Scholar
  6. Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA 100, 2450–2455 (2003).
    Article CAS Google Scholar
  7. Strawn, L. A., Shen, T., Shulga, N., Goldfarb, D. S. & Wente, S. R. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nature Cell Biol. 6, 197–206 (2004).
    Article CAS Google Scholar
  8. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture and transport mechanism. J. Cell Biol. 148, 635–651 (2000).
    Article CAS Google Scholar
  9. Rout, M. P., Aitchison, J. D., Magnasco, M. O. & Chait, B. T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13, 622–628 (2003).
    Article CAS Google Scholar
  10. Lim, R. Y. H. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science 318, 640–643 (2007).
    Article CAS Google Scholar
  11. Frey, S., Richter, R. P. & Görlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817 (2006).
    Article CAS Google Scholar
  12. Frey, S. & Görlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130, 512–523 (2007).
    Article CAS Google Scholar
  13. Peters, R. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic 6, 421–427 (2005).
    Article CAS Google Scholar
  14. Yamada, J. et al. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol.Cell. Proteomics 9, 2205–2224 (2010).
    Article CAS Google Scholar
  15. Lowe, A. R. et al. Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature 467, 600–603 (2010).
    Article CAS Google Scholar
  16. Caspi, Y., Zbaida, D., Cohen, H. & Elbaum, M. Synthetic mimic of selective transport through the nuclear pore complex. Nano Lett. 8, 3728–3724 (2008).
    Article CAS Google Scholar
  17. Lakshmi, B. & Martin, C. R. Enantioseparation using apoenzymes immobilized in a porous polymeric membrane. Nature 388, 758–760 (1997).
    Article CAS Google Scholar
  18. Lee, S. B. et al. Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296, 2198–2200 (2002).
    Article CAS Google Scholar
  19. Kohli, P. et al. DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305, 984–986 (2004).
    Article CAS Google Scholar
  20. Lim, R. Y. H., Aebi, U. & Stoffler, D. From the trap to the basket: getting to the bottom of the nuclear pore complex. Chromosoma 115, 15–26 (2006).
    Article Google Scholar
  21. Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nature Mater. 2, 537–540 (2003).
    Article CAS Google Scholar
  22. Jin, L., Horgan, A. & Levicky, R. Preparation of end-tethered DNA monolayers on siliceous surfaces using heterobifunctional cross-linkers. Langmuir 19, 6968–6975 (2003).
    Article CAS Google Scholar
  23. Bustamante, J. O., Liepnis, A., Prendergast, R. A., Hanover, J. A. & Oberleithner, H. Patch clamp and atomic force microscopy demonstrate TATA-binding protein(TBP) interactions with the nuclear pore complex. J. Membr. Biol. 146, 263–272 (1995).
    CAS Google Scholar
  24. Danker, T. et al. Nuclear hourglass technique: an approach that detects electrically open nuclear pores in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 96, 13530–13535 (1999).
    Article CAS Google Scholar
  25. Smeets, R. M. M., Keyser, U. F., Dekker, N. H. & Dekker, C. Noise in solid-state nanopores. Proc. Natl Acad. Sci. USA 105, 417–421 (2008).
    Article CAS Google Scholar
  26. Siwy, Z. & Fulinski, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 89, 198103 (2002).
    Article CAS Google Scholar
  27. Hall, J. E. Access resistance of a small circular pore. J. Gen. Physiol. 66, 531–532 (1975).
    Article CAS Google Scholar
  28. Ma, J. & Yang, W. Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc. Natl Acad. Sci. USA 107, 7305–7310 (2010).
    Article CAS Google Scholar
  29. Moussavi-Baygi, R., Jamali, Y., Karimi, R. & Mofrad, M. R. K. Biophysical coarse-grained modeling provides insights into transport through the nuclear pore complex. Biophys. J. 100, 1410–1419 (2011).
    Article CAS Google Scholar
  30. Fologea, D., Ledden, B., McNabb, D. S. & Li, J. Electrical characterization of protein molecules by a solid-state nanopore. Appl. Phys. Lett. 91, 053901 (2007).
    Article Google Scholar
  31. Yang, W. & Musser, S. M. Nuclear import time and transport efficiency depend on importin β concentration. J. Cell Biol. 174, 951–961 (2006).
    Article CAS Google Scholar
  32. Storm, A. J., Chen, J. H., Zandbergen, H. W. & Dekker, C. Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E. 71, 051903 (2005).
    Article CAS Google Scholar
  33. Dange, T., Grünwald, D., Grünwald, A., Peters, R. & Kubitscheck, U. Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study. J. Cell Biol. 183, 77–86 (2008).
    Article CAS Google Scholar
  34. Yang, W. D., Gelles, J. & Musser, S. M. Imaging of single-molecule translocation through nuclear pore complexes. Proc. Natl Acad. Sci. USA 101, 12887–12892 (2004).
    Article CAS Google Scholar
  35. Kubitscheck, U. et al. Nuclear transport of single molecules: dwell times at the nuclear pore complex. J. Cell Biol. 168, 233–243 (2005).
    Article Google Scholar
  36. Kowalczyk, S. W., Hall, A. R. & Dekker, C. Detection of local protein structures along DNA using solid-state nanopores. Nano Lett. 10, 324–328 (2010).
    Article CAS Google Scholar
  37. Zilman, A., Di Talia, S., Chait, B., Rout, M. & Magnasco, M. Efficiency, selectivity and robustness of the transport through the nuclear pore complex. PLoS Comput. Biol. 3, e125 (2007).
    Article Google Scholar
  38. Zilman, A. et al. Enhancement of transport selectivity through nano-channels by non-specific competition. PLoS Comput. Biol. 6, e1000804 (2010).
    Article Google Scholar
  39. Keyser, U. F. et al. Direct force measurements on DNA in a solid-state nanopore. Nature Phys. 2, 473–477 (2006).
    Article CAS Google Scholar
  40. Strelkov, S. V., Kreplak, L., Herrmann, H. & Aebi, U. Intermediate filament protein structure determination. Meth. Cell Biol. 78, 25–43 (2004).
    Article CAS Google Scholar
  41. Krapf, D. et al. Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett. 6, 105–109 (2006).
    Article CAS Google Scholar
  42. Wanunu, M. & Meller, A. Chemically modified solid-state nanopores. Nano Lett. 7, 1580–1585 (2007).
    Article CAS Google Scholar

Download references