Single-molecule transport across an individual biomimetic nuclear pore complex (original) (raw)
References
Alberts, B. et al. Molecular Biology of the Cell 5th edn (Garland Science, 2008). Google Scholar
Jovanovic-Talisman, T. et al. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature457, 1023–1027 (2009). ArticleCAS Google Scholar
Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature450, 695–701 (2007). ArticleCAS Google Scholar
Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA100, 2450–2455 (2003). ArticleCAS Google Scholar
Strawn, L. A., Shen, T., Shulga, N., Goldfarb, D. S. & Wente, S. R. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nature Cell Biol.6, 197–206 (2004). ArticleCAS Google Scholar
Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture and transport mechanism. J. Cell Biol.148, 635–651 (2000). ArticleCAS Google Scholar
Rout, M. P., Aitchison, J. D., Magnasco, M. O. & Chait, B. T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol.13, 622–628 (2003). ArticleCAS Google Scholar
Lim, R. Y. H. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science318, 640–643 (2007). ArticleCAS Google Scholar
Frey, S., Richter, R. P. & Görlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science314, 815–817 (2006). ArticleCAS Google Scholar
Frey, S. & Görlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell130, 512–523 (2007). ArticleCAS Google Scholar
Peters, R. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic6, 421–427 (2005). ArticleCAS Google Scholar
Yamada, J. et al. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol.Cell. Proteomics9, 2205–2224 (2010). ArticleCAS Google Scholar
Lowe, A. R. et al. Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature467, 600–603 (2010). ArticleCAS Google Scholar
Caspi, Y., Zbaida, D., Cohen, H. & Elbaum, M. Synthetic mimic of selective transport through the nuclear pore complex. Nano Lett.8, 3728–3724 (2008). ArticleCAS Google Scholar
Lakshmi, B. & Martin, C. R. Enantioseparation using apoenzymes immobilized in a porous polymeric membrane. Nature388, 758–760 (1997). ArticleCAS Google Scholar
Lee, S. B. et al. Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science296, 2198–2200 (2002). ArticleCAS Google Scholar
Kohli, P. et al. DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science305, 984–986 (2004). ArticleCAS Google Scholar
Lim, R. Y. H., Aebi, U. & Stoffler, D. From the trap to the basket: getting to the bottom of the nuclear pore complex. Chromosoma115, 15–26 (2006). Article Google Scholar
Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nature Mater.2, 537–540 (2003). ArticleCAS Google Scholar
Jin, L., Horgan, A. & Levicky, R. Preparation of end-tethered DNA monolayers on siliceous surfaces using heterobifunctional cross-linkers. Langmuir19, 6968–6975 (2003). ArticleCAS Google Scholar
Bustamante, J. O., Liepnis, A., Prendergast, R. A., Hanover, J. A. & Oberleithner, H. Patch clamp and atomic force microscopy demonstrate TATA-binding protein(TBP) interactions with the nuclear pore complex. J. Membr. Biol.146, 263–272 (1995). CAS Google Scholar
Danker, T. et al. Nuclear hourglass technique: an approach that detects electrically open nuclear pores in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA96, 13530–13535 (1999). ArticleCAS Google Scholar
Smeets, R. M. M., Keyser, U. F., Dekker, N. H. & Dekker, C. Noise in solid-state nanopores. Proc. Natl Acad. Sci. USA105, 417–421 (2008). ArticleCAS Google Scholar
Siwy, Z. & Fulinski, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett.89, 198103 (2002). ArticleCAS Google Scholar
Hall, J. E. Access resistance of a small circular pore. J. Gen. Physiol.66, 531–532 (1975). ArticleCAS Google Scholar
Ma, J. & Yang, W. Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc. Natl Acad. Sci. USA107, 7305–7310 (2010). ArticleCAS Google Scholar
Moussavi-Baygi, R., Jamali, Y., Karimi, R. & Mofrad, M. R. K. Biophysical coarse-grained modeling provides insights into transport through the nuclear pore complex. Biophys. J.100, 1410–1419 (2011). ArticleCAS Google Scholar
Fologea, D., Ledden, B., McNabb, D. S. & Li, J. Electrical characterization of protein molecules by a solid-state nanopore. Appl. Phys. Lett.91, 053901 (2007). Article Google Scholar
Yang, W. & Musser, S. M. Nuclear import time and transport efficiency depend on importin β concentration. J. Cell Biol.174, 951–961 (2006). ArticleCAS Google Scholar
Storm, A. J., Chen, J. H., Zandbergen, H. W. & Dekker, C. Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E.71, 051903 (2005). ArticleCAS Google Scholar
Dange, T., Grünwald, D., Grünwald, A., Peters, R. & Kubitscheck, U. Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study. J. Cell Biol.183, 77–86 (2008). ArticleCAS Google Scholar
Yang, W. D., Gelles, J. & Musser, S. M. Imaging of single-molecule translocation through nuclear pore complexes. Proc. Natl Acad. Sci. USA101, 12887–12892 (2004). ArticleCAS Google Scholar
Kubitscheck, U. et al. Nuclear transport of single molecules: dwell times at the nuclear pore complex. J. Cell Biol.168, 233–243 (2005). Article Google Scholar
Kowalczyk, S. W., Hall, A. R. & Dekker, C. Detection of local protein structures along DNA using solid-state nanopores. Nano Lett.10, 324–328 (2010). ArticleCAS Google Scholar
Zilman, A., Di Talia, S., Chait, B., Rout, M. & Magnasco, M. Efficiency, selectivity and robustness of the transport through the nuclear pore complex. PLoS Comput. Biol.3, e125 (2007). Article Google Scholar
Zilman, A. et al. Enhancement of transport selectivity through nano-channels by non-specific competition. PLoS Comput. Biol.6, e1000804 (2010). Article Google Scholar
Keyser, U. F. et al. Direct force measurements on DNA in a solid-state nanopore. Nature Phys.2, 473–477 (2006). ArticleCAS Google Scholar
Strelkov, S. V., Kreplak, L., Herrmann, H. & Aebi, U. Intermediate filament protein structure determination. Meth. Cell Biol.78, 25–43 (2004). ArticleCAS Google Scholar
Krapf, D. et al. Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett.6, 105–109 (2006). ArticleCAS Google Scholar
Wanunu, M. & Meller, A. Chemically modified solid-state nanopores. Nano Lett.7, 1580–1585 (2007). ArticleCAS Google Scholar