Nanoparticle-detained toxins for safe and effective vaccination (original) (raw)
Kitchin, N. R. Review of diphtheria, tetanus and pertussis vaccines in clinical development. Exp. Rev. Vaccines10, 605–615 (2011). ArticleCAS Google Scholar
Greenberg, R. N., Marbury, T. C., Foglia, G. & Warny, M. Phase I dose finding studies of an adjuvanted Clostridium difficile toxoid vaccine. Vaccine30, 2245–2249 (2012). ArticleCAS Google Scholar
Mortimer, E. A. Jr. Immunization against infectious disease. Science200, 902–907 (1978). Article Google Scholar
Holmgren, J. et al. Development of improved cholera vaccine based on subunit toxoid. Nature269, 602–604 (1977). ArticleCAS Google Scholar
Gentschev, I., Dietrich, G. & Goebel, W. The E. coli alpha-hemolysin secretion system and its use in vaccine development. Trends Microbiol.10, 39–45 (2002). ArticleCAS Google Scholar
Cover, T. L. & Blanke, S. R. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nature Rev. Microbiol.3, 320–332 (2005). ArticleCAS Google Scholar
Bubeck Wardenburg, J. & Schneewind, O. Vaccine protection against Staphylococcus aureus pneumonia. J. Exp. Med.205, 287–294 (2008). Article Google Scholar
Parish, H. J. & Cannon, D. A. Staphylococcal infection: antitoxic immunity. Br. Med. J.1, 743–747 (1960). ArticleCAS Google Scholar
Metz, B. et al. Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J. Biol. Chem.279, 6235–6243 (2004). ArticleCAS Google Scholar
Cryz, S. J. Jr, Furer, E. & Germanier, R. Effect of chemical and heat inactivation on the antigenicity and immunogenicity of Vibrio cholerae. Infect. Immunol.38, 21–26 (1982). Google Scholar
Vogel, F. R. Improving vaccine performance with adjuvants. Clin. Infect. Dis.30(Suppl 3), S266–S270 (2000). ArticleCAS Google Scholar
Kennedy, A. D. et al. Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. J. Infect. Dis.202, 1050–1058 (2010). Article Google Scholar
Adhikari, R. P. et al. Novel structurally designed vaccine for S. aureus α-hemolysin: protection against bacteremia and pneumonia. PLoS One7, e38567 (2012). ArticleCAS Google Scholar
Jang, S. I. et al. Vaccination with Clostridium perfringens recombinant proteins in combination with Montanide ISA 71 VG adjuvant increases protection against experimental necrotic enteritis in commercial broiler chickens. Vaccine30, 5401–5406 (2012). ArticleCAS Google Scholar
Kirkham, L. A. et al. Construction and immunological characterization of a novel nontoxic protective pneumolysin mutant for use in future pneumococcal vaccines. Infect. Immunol.74, 586–593 (2006). ArticleCAS Google Scholar
Hu, C. M. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA108, 10980–10985 (2011). ArticleCAS Google Scholar
Hu, C. M., Fang, R., Copp, J., Luk, B. & Zhang, L. A biomimetic nanosponge that absorbs pore-forming toxins. Nature Nanotech.8, 336–340 (2013). ArticleCAS Google Scholar
Dobrovolskaia, M. A. & McNeil, S. E. Immunological properties of engineered nanomaterials. Nature Nanotech.2, 469–478 (2007). ArticleCAS Google Scholar
Moon, J. J. et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nature Mater.10, 243–251 (2011). ArticleCAS Google Scholar
Sun, C. et al. Circumventing anti-vector immunity using adenovirus-infected blood cells for repeated application of adenovirus vectored vaccines: proof-of-concept in rhesus macaques. J. Virol.86, 11031–11042 (2012). ArticleCAS Google Scholar
Roberts, D. M. et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature441, 239–243 (2006). ArticleCAS Google Scholar
Skean, J. D. & Overcast, W. W. Efficacy of staphylococcal vaccines to elicit antistaphylococcal alpha-hemolysin in dairy cows. J. Dairy Sci.51, 1239–1242 (1968). ArticleCAS Google Scholar
Elamanchili, P., Diwan, M., Cao, M. & Samuel, J. Characterization of poly(D,L-lactic-_co_-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine22, 2406–2412 (2004). ArticleCAS Google Scholar
Moon, J. J. et al. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc. Natl Acad. Sci. USA109, 1080–1085 (2012). ArticleCAS Google Scholar
Inoshima, I. et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nature Med.17, 1310–1314 (2011). ArticleCAS Google Scholar
Moon, J. J., Huang, B. & Irvine, D. J. Engineering nano- and microparticles to tune immunity. Adv. Mater.24, 3724–3746 (2012). ArticleCAS Google Scholar
Swartz, M. A., Hirosue, S. & Hubbell, J. A. Engineering approaches to immunotherapy. Sci. Transl. Med.4, 148rv149 (2012). Article Google Scholar
Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnol.25, 1159–1164 (2007). ArticleCAS Google Scholar
Hubbell, J. A., Thomas, S. N. & Swartz, M. A. Materials engineering for immunomodulation. Nature462, 449–460 (2009). ArticleCAS Google Scholar
Parodi, A. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nature Nanotech.8, 61–68 (2013). ArticleCAS Google Scholar