Advances in multiphoton microscopy technology (original) (raw)
References
Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science248, 73–76 (1990). ArticleADS Google Scholar
Peleg, G., Lewis, A., Linial, M. & Loew, L. M. Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites. Proc. Natl Acad. Sci. USA96, 6700–6704 (1999). ADS Google Scholar
Chu, S. W. et al. In vivo developmental biology study using noninvasive multi-harmonic generation microscopy. Opt. Express11, 3093–3099 (2003). ADS Google Scholar
Cheng, A., Gonçalves, J. T., Golshani, P., Arisaka, K. & Portera-Cailliau, C. Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nat. Methods8, 139–142 (2011). Google Scholar
Stelzer, E. H. et al. Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume. Opt. Commun.104, 223–228 (1994). ADS Google Scholar
Chen, I. H., Chu, S. W., Sun, C. K., Cheng, P. C. & Lin, B. L. Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources. Opt. Quant. Electron.34, 1251–1266 (2002). Google Scholar
Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods2, 932–940 (2005). Google Scholar
Yaroslavsky, A. N. et al. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys. Med. Biol.47, 2059–2073 (2002). Google Scholar
Theer, P. & Denk, W. On the fundamental imaging-depth limit in two-photon microscopy. J. Opt. Soc. Am. A23, 3139–3149 (2006). ADS Google Scholar
Kobat, D. et al. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Express17, 13354–13364 (2009). ADS Google Scholar
Ntziachristos, V. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Methods7, 603–614 (2010). Google Scholar
Barad, Y., Eisenberg, H., Horowitz, M. & Silberberg, Y. Nonlinear scanning laser microscopy by third harmonic generation. Appl. Phys. Lett.70, 922–924 (1997). ADS Google Scholar
Masihzadeh, O., Schlup, P. & Bartels, R. A. Label-free second harmonic generation holographic microscopy of biological specimens. Opt. Express18, 9840–9851 (2010). ADS Google Scholar
Zhuo, S. et al. Label-free monitoring of colonic cancer progression using multiphoton microscopy. Biomed. Opt. Express2, 615–619 (2011). Google Scholar
Segawa, H. et al. Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation). Opt. Express20, 9551–9557 (2012). ADS Google Scholar
Theer, P., Hasan, M. T. & Denk, W. Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt. Lett.28, 1022–1024 (2003). ADS Google Scholar
Yue, S., Slipchenko, M. & Cheng, J. X. Multimodal nonlinear optical microscopy. Las. Photon. Rev.5, 496–512 (2011). ADS Google Scholar
Chung, C. Y., Boik, J. & Potma, E. O. Biomolecular imaging with coherent nonlinear vibrational microscopy. Ann. Rev. Phys. Chem.64, 77–99 (2013). ADS Google Scholar
Larson, A. & Yeh, A. Ex vivo characterization of sub-10-fs pulses. Opt. Lett.31, 1681–1683 (2006). ADS Google Scholar
Pestov, D., Xu, B., Li, H. & Dantus, M. Delivery and characterization of sub-8fs laser pulses at the imaging plane of a two-photon microscope. Proc. SPIE7903, 79033B (2011). ADS Google Scholar
Selm, R., Krauss, G., Leitenstorfer, A. & Zumbusch, A. Simultaneous second-harmonic generation, third-harmonic generation, and four-wave mixing microscopy with single sub-8 fs laser pulses. Appl. Phys. Lett.99, 181124 (2011). ADS Google Scholar
Zipfel, W., Williams, R. & Webb, W. W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nature Biotechnol.21, 1369–1377 (2003). Google Scholar
Mertz, J. Nonlinear microscopy: New techniques and applications. Curr. Opin. Neurobiol.14, 610–616 (2004). Google Scholar
Svoboda, K. & Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron50, 823–839 (2006). Google Scholar
Sheetz, K. E. & Squier, J. Ultrafast optics: Imaging and manipulating biological systems. J. Appl. Phys.105, 051101 (2009). ADS Google Scholar
Carriles, R. et al. Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev. Sci. Instr.80, 081101 (2009). ADS Google Scholar
Field, J. et al. Optimizing the fluorescent yield in two-photon laser scanning microscopy with dispersion compensation. Opt. Express18, 13661–13672 (2010). ADS Google Scholar
Gannaway, J. N. & Sheppard, C. J. R. Second-harmonic imaging in the scanning optical microscope. Opt. Quant. Electron.10, 435–439 (1978). Google Scholar
Raghunathan, V., Han, Y., Korth, O., Ge, N. H. & Potma, E. Rapid vibrational imaging with sum frequency generation microscopy. Opt. Lett.30, 3891–3893 (2011). ADS Google Scholar
Fu, D. et al. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy. J. Am. Chem. Soc.134, 3623–3626 (2012). Google Scholar
Zumbusch, A., Holtom, G. R. & Xie, X. S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett.82, 4142–4145 (1999). ADS Google Scholar
Chen, H. et al. A multimodal platform for nonlinear optical microscopy and microspectroscopy. Opt. Express17, 1282–1290 (2009). ADS Google Scholar
Becker, W. & Bergmann, A. Lifetime-resolved imaging in nonlinear microscopy in Handbook of Biomedical Nonlinear Optical Microscopy (eds Masters, B. & So, P.) 499–556 (Oxford University, 2008). Google Scholar
Becker, W. et al. Fluorescence lifetime imaging by time-correlated single photon counting. Microsc. Res. Tech.63, 58–66 (2004). Google Scholar
Driscoll, J. D. et al. Photon counting, censor corrections, and lifetime imaging for improved detection in two-photon microscopy. J. Neurophysiol.105, 3106–3113 (2011). Google Scholar
Pastrirk, I., Cruz, J., Walowicz, K., Lozovoy, V. & Dantus, M. Selective two-photon microscopy with shaped femtosecond pulses. Opt. Express11, 1695–1701 (2003). ADS Google Scholar
Cruz, J., Pastirk, I., Comstock, M., Lozovoy, V. & Dantus, M. Use of coherent control methods through scattering biological tissue to achieve functional imaging. Proc. Natl Acad. Sci. USA101, 16996–17001 (2004). ADS Google Scholar
Cruz, J., Pastirk, I., Comstock, M. & Dantus, M. Multiphoton intrapulse interference: Coherent control through scattering tissue. Opt. Express12, 4144–4149 (2004). ADS Google Scholar
Meshulach, D. & Silberberg, Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature396, 239–242 (1998). ADS Google Scholar
Pillai, R. et al. Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses. Opt. Express17, 12741–12752 (2009). ADS Google Scholar
Fischer, M. et al. Two-photon absorption and self-phase modulation measurements with shaped femtosecond laser pulses. Opt. Lett.30, 1551–1553 (2005). ADS Google Scholar
Fischer, M., Liu, H., Piletic, I. & Warren, W. Simultaneous self-phase modulation and two-photon absorption measurement by a spectral homodyne Z-scan method. Opt. Express16, 4192–4205 (2008). ADS Google Scholar
Fischer, M. et al. Self-phase modulation signatures of neuronal activity. Opt. Lett.33, 219–221 (2008). ADS Google Scholar
Beaurepaire, E., Oheim, M. & Mertz, J. Ultra-deep two-photon fluorescence excitation in turbid media. Opt. Commun.188, 25–29 (2001). ADS Google Scholar
Ohem, M., Beaurepaire, E., Chaigneau, E., Mertz, J. & Charpak, S. Two-photon microsscopy in brain tissue: Parameters influencing the imaging depth. J. Neurosci. Meth.111, 29–37 (2001). Google Scholar
Buehler, C., Kim, K. H., Dong, C. Y., Masters, B. & So, P. T. C. Innovations in two-photon deep tissue microscopy. Eng. Med. Biol. Mag.18, 23–30 (1999). Google Scholar
Kobat, D., Horton, N. G. & Xu, C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt.16, 106014 (2011). ADS Google Scholar
Balu, M. et al. Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media. J. Biomed. Opt.14, 010508 (2009). ADS Google Scholar
Chu, S. W. et al. Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser. Opt. Lett.26, 1909–1911 (2001). ADS Google Scholar
Levene, M. J., Dombeck, D. A., Kasischke, K. A., Molloy, R. P. & Webb, W. W. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol.91, 1908–1912 (2004). Google Scholar
Jung, W. et al. Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy. Opt. Lett.33, 1324–1326 (2008). ADS Google Scholar
Chia, S. H. et al. Miniaturized video-rate epi-third-harmonic-generation fiber-microscope. Opt. Express18, 17382–17391 (2010). ADS Google Scholar
Saar, B. G., Johnston, R. S., Freudiger, C. W., Xie, X. S. & Seibel, E. J. Coherent Raman scanning fiber endoscopy. Opt. Lett.36, 2396–2398 (2011). ADS Google Scholar
Rivera, D. R., Brown, C. M., Ouzounov, D. G., Webb, W. W. & Xu, C. Multifocal multiphoton endoscope. Opt. Lett.37, 1349–1351 (2012). ADS Google Scholar
Martini, J. et al. Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time. J. Struct. Biol.158, 401–409 (2007). Google Scholar
Chen, Z., Wei, L., Zhu, X. & Min, W. Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores. Opt. Express20, 18525–18536 (2012). ADS Google Scholar
Cheng, P. C. et al. Highly efficient upconverters for multiphoton fluorescence microscopy. J. Microsc.189, 199–212 (1998). Google Scholar
Extermann, J. et al. Nanodoublers as deep imaging markers for multi-photon microscopy. Opt. Express17, 15342–15349 (2009). ADS Google Scholar
Zinter, J. P. & Levene, M. J. Maximizing fluorescence collection efficiency in multiphoton microscopy. Opt. Express19, 15348–15362 (2011). ADS Google Scholar
Amir, W. et al. Simultaneous imaging of multiple focal planes using a two-photon scanning microscope. Opt. Lett.32, 1731–1733 (2007). ADS Google Scholar
Carriles, R., Sheetz, K. E., Hoover, E. E., Squier, J. A. & Barzda, V. Simultaneous multifocal, multiphoton, photon counting microscopy. Opt. Express16, 10364–10371 (2008). ADS Google Scholar
Benninger, R. K. P., Ashby, W. J., Ring, E. A. & Piston, D. W. Single-photon-counting detector for increased sensitivity in two-photon laser scanning microscopy. Opt. Lett.33, 2895–2897 (2008). ADS Google Scholar
Sandkuijl, D., Cisek, R., Major, A. & Barzda, V. Differential microscopy for fluorescence-detected nonlinear absorption linear anisotropy based on a staggered two-beam femtosecond Yb:KGW oscillator. Biomed. Opt. Express1, 895–901 (2010). Google Scholar
Sherman, L., Ye, J. Y., Albert, O. & Norris, T. B. Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror. J. Microsc.206, 65–71 (2002). MathSciNet Google Scholar
Neil, M. A. A. et al. Adaptive aberration correction in a two-photon microscope. J. Microsc.200, 105–108 (2000). Google Scholar
Albert, O., Sherman, L., Mourou, G. & Norris, T. B. Smart microscope: An adaptive optics learning system for aberration correction in multiphoton confocal microscopy. Opt. Lett.25, 52–54 (2000). ADS Google Scholar
Booth, M. J., Neil, M. A. A., Juškaitis, R. & Wilson, T. Adaptive aberration correction in a confocal microscope. Proc. Natl Acad. Sci. USA99, 5788–5792 (2002). ADS Google Scholar
Ji, N., Milkie, D. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods7, 141–147 (2009). Google Scholar
Leray, A. & Mertz, J. Rejection of two-photon fluorescence background in thick tissues by differential aberration imaging. Opt. Express14, 10565–10573 (2006). ADS Google Scholar
Girkin, J. M., Poland, S. & Wright, A. J. Adaptive optics for deeper imaging of biological samples. Curr. Opin. Biotechnol.20, 106–110 (2009). Google Scholar
Facomprez, A., Beaurepaire, E. & Débarre, D. Accuracy of correction in modal sensorless adaptive optics. Opt. Express20, 2598–2612 (2012). ADS Google Scholar
Bewersdorf, J., Pick, R. & Hell, S. W. Multifocal multiphoton microscopy. Opt. Lett.23, 655–657 (1998). ADS Google Scholar
Buist, A. H., Müller, M., Squier, J. & Brakenhoff, G. J. Real time two-photon absorption microscopy using multi point excitation. J. Microsc.192, 217–226 (1998). Google Scholar
Straub, M. & Hell, S. W. Multifocal multiphoton microscopy: A fast and efficient tool for 3-D fluorescence imaging. Bioimaging6, 177–185 (1998). Google Scholar
Egner, A. & Hell, S. W. Time multiplexing and parallelization in multifocal multiphoton microscopy. J. Opt. Soc. Am. A17, 1192–201 (2000). ADS Google Scholar
Nielsen, T., Fricke, M., Hellweg, D. & Andresen, P. High efficiency beam splitter for multifocal multiphoton microscopy. J. Microsc.201, 368–376 (2001). MathSciNet Google Scholar
Bahlmann, K. et al. Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz. Opt. Express15, 10991–10998 (2007). ADS Google Scholar
Niesner, R., Andresen, V., Neumann, J., Spiecker, H. & Gunzer, M. The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging. Biophys. J.93, 2519–2529 (2007). ADS Google Scholar
Kim, K. H. et al. Multifocal multiphoton microscopy based on multianode photomultiplier tubes. Opt. Express15, 11658–11678 (2007). ADS Google Scholar
Lee, A. M. D. et al. In vivo video rate multiphoton microscopy imaging of human skin. Opt. Lett.36, 2865–2867 (2011). ADS Google Scholar
Fan, G., Fujisaki, H., Miyakawi, A., Tsien, R. & Ellisman, M. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with chameleons. Biophys. J.76, 2412–2420 (1999). Google Scholar
Veilleux, I., Spencer, J. A., Biss, D. P., Côtè, D. & Lin, C. P. In vivo cell tracking with video rate multimodality laser scanning microscopy. IEEE J. Sel. Top. Quant. Electron.14, 10–18 (2008). ADS Google Scholar
Grewe, B. F., Voigt, F. F., van't Hoff, M. & Helmchen, F. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed. Opt. Express2, 2035–2046 (2011). Google Scholar
Bullen, A., Patel, S. & Saggau, P. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators. Biophys. J.73, 477–491 (1997). Google Scholar
Shao, Y. et al. Ultrafast, large-field multiphoton microscopy based on an acousto-optic deflector and a spatial light modulator. Opt. Lett.37, 2532–2534 (2012). ADS Google Scholar
Saloméa, R. et al. Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. J. Neurosci. Meth.154, 161–74 (2006). Google Scholar
Reddy, G. D., Kelleher, K., Fink, R. & Saggau, P. Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nature Neurosci.11, 713–720 (2008). Google Scholar
Koenig, K., Liang, H., Berns, M. & Tromberg, B. J. Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption. Opt. Lett.21, 1090–1092 (1996). ADS Google Scholar
Kirkby, P. A., Nadella, K. M. N. S. & Silver, R. A. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy. Opt. Express18, 13721–13745 (2010). ADS Google Scholar
Kremer, Y. et al. A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view. Opt. Express16, 10066–10076 (2008). ADS Google Scholar
Botcherby, E. J. et al. Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates. Proc. Natl Acad. Sci. USA109, 2919–2924 (2012). ADS Google Scholar
Brakenhoff, G. J. et al. Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system. J. Microsc.181, 253–259 (1996). Google Scholar
Oron, D., Tal, E. & Silberberg, Y. Scanningless depth-resolved microscopy. Opt. Express13, 1468–1476 (2005). ADS Google Scholar
Zhu, G., van Howe, J., Durst, M., Zipfel, W. R. & Xu, C. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express13, 2153–2159 (2005). ADS Google Scholar
Therrien, O. D., Aubé, B., Pagès, S., De Koninck, P. & Côtè, D. Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination. Biomed. Opt. Express2, 696–704 (2011). Google Scholar
Cheng, L. C. et al. Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning. Opt. Express20, 8939–8948 (2012). ADS Google Scholar
Durst, M. E., Zhu, G. & Xu, C. Simultaneous spatial and temporal focusing in nonlinear microscopy. Opt. Commun.281, 1796–1805 (2008). ADS Google Scholar
Durst, M. E., Straub, A. A. & Xu, C. Enhanced axial confinement of sum-frequency generation in a temporal focusing setup. Opt. Lett.34, 1786–1788 (2009). ADS Google Scholar
Mohanty, S. K. et al. In-depth activation of channelrhodopsin 2-sensitized excitable cells with high spatial resolution using two-photon excitation with a near-infrared laser microbeam. Biophys. J.95, 3916–3926 (2008). ADS Google Scholar
Andrasfalvy, B. K., Zemelman, B. V., Tang, J. & Vaziri, A. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc. Natl Acad. Sci. USA107, 11981–11986 (2010). ADS Google Scholar
Botcherby, E. J., Booth, M. J., Juškaitis, R. & Wilson, T. Real-time extended depth of field microscopy. Opt. Express16, 21843–21848 (2008). ADS Google Scholar
Botcherby, E. J., Booth, M. J., Juškaitis, R. & Wilson, T. Real-time slit scanning microscopy in the meridional plane. Opt. Lett.34, 1504–1506 (2009). ADS Google Scholar
Hoover, E. E. et al. Remote focusing for programmable multi-layer differential multiphoton microscopy. Biomed. Opt. Express2, 113–122 (2010). Google Scholar
Anselmi, F., Ventalon, C., Bègue, A., Ogden, D. & Emiliani, V. Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning. Proc. Natl Acad. Sci. USA108, 19504–19509 (2011). ADS Google Scholar
Hoover, E. E. et al. Eliminating the scattering ambiguity in multifocal, multimodal, multiphoton imaging systems. J. Biophoton.5, 425–436 (2012). Google Scholar
Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated emission depletion fluorescence microscopy. Opt. Lett.19, 780–782 (1994). ADS Google Scholar
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science313, 1642–1645 (2006). ADS Google Scholar
Huang, B., Wenqin, W. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science319, 810–813 (2008). ADS Google Scholar
Hell, S. W., Schmidt, R. & Egner, A. Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nature Photon.3, 381–387 (2009). ADS Google Scholar
Wachsmann-Hogiu, S. & Farkas, D. L. Nonlinear multispectral optical imaging microscopy: Concepts, instrumentation, and applications in Handbook of Biomedical Nonlinear Optical Microscopy 461–480 (Oxford University, 2008). Google Scholar
Truong, T., Supatto, W., Koos, D., Choi, J. & Fraser, S. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods8, 757–760 (2011). Google Scholar