Advances in multiphoton microscopy technology (original) (raw)

References

  1. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).
    Article ADS Google Scholar
  2. Peleg, G., Lewis, A., Linial, M. & Loew, L. M. Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites. Proc. Natl Acad. Sci. USA 96, 6700–6704 (1999).
    ADS Google Scholar
  3. Chu, S. W. et al. In vivo developmental biology study using noninvasive multi-harmonic generation microscopy. Opt. Express 11, 3093–3099 (2003).
    ADS Google Scholar
  4. Cheng, A., Gonçalves, J. T., Golshani, P., Arisaka, K. & Portera-Cailliau, C. Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nat. Methods 8, 139–142 (2011).
    Google Scholar
  5. Stelzer, E. H. et al. Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume. Opt. Commun. 104, 223–228 (1994).
    ADS Google Scholar
  6. Chen, I. H., Chu, S. W., Sun, C. K., Cheng, P. C. & Lin, B. L. Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources. Opt. Quant. Electron. 34, 1251–1266 (2002).
    Google Scholar
  7. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).
    Google Scholar
  8. Yaroslavsky, A. N. et al. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys. Med. Biol. 47, 2059–2073 (2002).
    Google Scholar
  9. Theer, P. & Denk, W. On the fundamental imaging-depth limit in two-photon microscopy. J. Opt. Soc. Am. A 23, 3139–3149 (2006).
    ADS Google Scholar
  10. Kobat, D. et al. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Express 17, 13354–13364 (2009).
    ADS Google Scholar
  11. Ntziachristos, V. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).
    Google Scholar
  12. Barad, Y., Eisenberg, H., Horowitz, M. & Silberberg, Y. Nonlinear scanning laser microscopy by third harmonic generation. Appl. Phys. Lett. 70, 922–924 (1997).
    ADS Google Scholar
  13. Masihzadeh, O., Schlup, P. & Bartels, R. A. Label-free second harmonic generation holographic microscopy of biological specimens. Opt. Express 18, 9840–9851 (2010).
    ADS Google Scholar
  14. Zhuo, S. et al. Label-free monitoring of colonic cancer progression using multiphoton microscopy. Biomed. Opt. Express 2, 615–619 (2011).
    Google Scholar
  15. Segawa, H. et al. Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation). Opt. Express 20, 9551–9557 (2012).
    ADS Google Scholar
  16. Theer, P., Hasan, M. T. & Denk, W. Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt. Lett. 28, 1022–1024 (2003).
    ADS Google Scholar
  17. Yue, S., Slipchenko, M. & Cheng, J. X. Multimodal nonlinear optical microscopy. Las. Photon. Rev. 5, 496–512 (2011).
    ADS Google Scholar
  18. Chung, C. Y., Boik, J. & Potma, E. O. Biomolecular imaging with coherent nonlinear vibrational microscopy. Ann. Rev. Phys. Chem. 64, 77–99 (2013).
    ADS Google Scholar
  19. Larson, A. & Yeh, A. Ex vivo characterization of sub-10-fs pulses. Opt. Lett. 31, 1681–1683 (2006).
    ADS Google Scholar
  20. Pestov, D., Xu, B., Li, H. & Dantus, M. Delivery and characterization of sub-8fs laser pulses at the imaging plane of a two-photon microscope. Proc. SPIE 7903, 79033B (2011).
    ADS Google Scholar
  21. Selm, R., Krauss, G., Leitenstorfer, A. & Zumbusch, A. Simultaneous second-harmonic generation, third-harmonic generation, and four-wave mixing microscopy with single sub-8 fs laser pulses. Appl. Phys. Lett. 99, 181124 (2011).
    ADS Google Scholar
  22. Zipfel, W., Williams, R. & Webb, W. W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nature Biotechnol. 21, 1369–1377 (2003).
    Google Scholar
  23. Mertz, J. Nonlinear microscopy: New techniques and applications. Curr. Opin. Neurobiol. 14, 610–616 (2004).
    Google Scholar
  24. Svoboda, K. & Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50, 823–839 (2006).
    Google Scholar
  25. Sheetz, K. E. & Squier, J. Ultrafast optics: Imaging and manipulating biological systems. J. Appl. Phys. 105, 051101 (2009).
    ADS Google Scholar
  26. Carriles, R. et al. Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev. Sci. Instr. 80, 081101 (2009).
    ADS Google Scholar
  27. Field, J. et al. Optimizing the fluorescent yield in two-photon laser scanning microscopy with dispersion compensation. Opt. Express 18, 13661–13672 (2010).
    ADS Google Scholar
  28. Gannaway, J. N. & Sheppard, C. J. R. Second-harmonic imaging in the scanning optical microscope. Opt. Quant. Electron. 10, 435–439 (1978).
    Google Scholar
  29. Raghunathan, V., Han, Y., Korth, O., Ge, N. H. & Potma, E. Rapid vibrational imaging with sum frequency generation microscopy. Opt. Lett. 30, 3891–3893 (2011).
    ADS Google Scholar
  30. Fu, D. et al. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy. J. Am. Chem. Soc. 134, 3623–3626 (2012).
    Google Scholar
  31. Zumbusch, A., Holtom, G. R. & Xie, X. S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82, 4142–4145 (1999).
    ADS Google Scholar
  32. Chen, H. et al. A multimodal platform for nonlinear optical microscopy and microspectroscopy. Opt. Express 17, 1282–1290 (2009).
    ADS Google Scholar
  33. Becker, W. & Bergmann, A. Lifetime-resolved imaging in nonlinear microscopy in Handbook of Biomedical Nonlinear Optical Microscopy (eds Masters, B. & So, P.) 499–556 (Oxford University, 2008).
    Google Scholar
  34. Becker, W. et al. Fluorescence lifetime imaging by time-correlated single photon counting. Microsc. Res. Tech. 63, 58–66 (2004).
    Google Scholar
  35. Driscoll, J. D. et al. Photon counting, censor corrections, and lifetime imaging for improved detection in two-photon microscopy. J. Neurophysiol. 105, 3106–3113 (2011).
    Google Scholar
  36. Pastrirk, I., Cruz, J., Walowicz, K., Lozovoy, V. & Dantus, M. Selective two-photon microscopy with shaped femtosecond pulses. Opt. Express 11, 1695–1701 (2003).
    ADS Google Scholar
  37. Cruz, J., Pastirk, I., Comstock, M., Lozovoy, V. & Dantus, M. Use of coherent control methods through scattering biological tissue to achieve functional imaging. Proc. Natl Acad. Sci. USA 101, 16996–17001 (2004).
    ADS Google Scholar
  38. Cruz, J., Pastirk, I., Comstock, M. & Dantus, M. Multiphoton intrapulse interference: Coherent control through scattering tissue. Opt. Express 12, 4144–4149 (2004).
    ADS Google Scholar
  39. Meshulach, D. & Silberberg, Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature 396, 239–242 (1998).
    ADS Google Scholar
  40. Pillai, R. et al. Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses. Opt. Express 17, 12741–12752 (2009).
    ADS Google Scholar
  41. Fischer, M. et al. Two-photon absorption and self-phase modulation measurements with shaped femtosecond laser pulses. Opt. Lett. 30, 1551–1553 (2005).
    ADS Google Scholar
  42. Fischer, M., Liu, H., Piletic, I. & Warren, W. Simultaneous self-phase modulation and two-photon absorption measurement by a spectral homodyne Z-scan method. Opt. Express 16, 4192–4205 (2008).
    ADS Google Scholar
  43. Fischer, M. et al. Self-phase modulation signatures of neuronal activity. Opt. Lett. 33, 219–221 (2008).
    ADS Google Scholar
  44. Beaurepaire, E., Oheim, M. & Mertz, J. Ultra-deep two-photon fluorescence excitation in turbid media. Opt. Commun. 188, 25–29 (2001).
    ADS Google Scholar
  45. Ohem, M., Beaurepaire, E., Chaigneau, E., Mertz, J. & Charpak, S. Two-photon microsscopy in brain tissue: Parameters influencing the imaging depth. J. Neurosci. Meth. 111, 29–37 (2001).
    Google Scholar
  46. Buehler, C., Kim, K. H., Dong, C. Y., Masters, B. & So, P. T. C. Innovations in two-photon deep tissue microscopy. Eng. Med. Biol. Mag. 18, 23–30 (1999).
    Google Scholar
  47. Kobat, D., Horton, N. G. & Xu, C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 16, 106014 (2011).
    ADS Google Scholar
  48. Balu, M. et al. Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media. J. Biomed. Opt. 14, 010508 (2009).
    ADS Google Scholar
  49. Chu, S. W. et al. Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser. Opt. Lett. 26, 1909–1911 (2001).
    ADS Google Scholar
  50. Levene, M. J., Dombeck, D. A., Kasischke, K. A., Molloy, R. P. & Webb, W. W. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 91, 1908–1912 (2004).
    Google Scholar
  51. Jung, W. et al. Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy. Opt. Lett. 33, 1324–1326 (2008).
    ADS Google Scholar
  52. Chia, S. H. et al. Miniaturized video-rate epi-third-harmonic-generation fiber-microscope. Opt. Express 18, 17382–17391 (2010).
    ADS Google Scholar
  53. Saar, B. G., Johnston, R. S., Freudiger, C. W., Xie, X. S. & Seibel, E. J. Coherent Raman scanning fiber endoscopy. Opt. Lett. 36, 2396–2398 (2011).
    ADS Google Scholar
  54. Rivera, D. R., Brown, C. M., Ouzounov, D. G., Webb, W. W. & Xu, C. Multifocal multiphoton endoscope. Opt. Lett. 37, 1349–1351 (2012).
    ADS Google Scholar
  55. Martini, J. et al. Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time. J. Struct. Biol. 158, 401–409 (2007).
    Google Scholar
  56. Chen, Z., Wei, L., Zhu, X. & Min, W. Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores. Opt. Express 20, 18525–18536 (2012).
    ADS Google Scholar
  57. Cheng, P. C. et al. Highly efficient upconverters for multiphoton fluorescence microscopy. J. Microsc. 189, 199–212 (1998).
    Google Scholar
  58. Extermann, J. et al. Nanodoublers as deep imaging markers for multi-photon microscopy. Opt. Express 17, 15342–15349 (2009).
    ADS Google Scholar
  59. Zinter, J. P. & Levene, M. J. Maximizing fluorescence collection efficiency in multiphoton microscopy. Opt. Express 19, 15348–15362 (2011).
    ADS Google Scholar
  60. Amir, W. et al. Simultaneous imaging of multiple focal planes using a two-photon scanning microscope. Opt. Lett. 32, 1731–1733 (2007).
    ADS Google Scholar
  61. Carriles, R., Sheetz, K. E., Hoover, E. E., Squier, J. A. & Barzda, V. Simultaneous multifocal, multiphoton, photon counting microscopy. Opt. Express 16, 10364–10371 (2008).
    ADS Google Scholar
  62. Benninger, R. K. P., Ashby, W. J., Ring, E. A. & Piston, D. W. Single-photon-counting detector for increased sensitivity in two-photon laser scanning microscopy. Opt. Lett. 33, 2895–2897 (2008).
    ADS Google Scholar
  63. Sandkuijl, D., Cisek, R., Major, A. & Barzda, V. Differential microscopy for fluorescence-detected nonlinear absorption linear anisotropy based on a staggered two-beam femtosecond Yb:KGW oscillator. Biomed. Opt. Express 1, 895–901 (2010).
    Google Scholar
  64. Sherman, L., Ye, J. Y., Albert, O. & Norris, T. B. Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror. J. Microsc. 206, 65–71 (2002).
    MathSciNet Google Scholar
  65. Neil, M. A. A. et al. Adaptive aberration correction in a two-photon microscope. J. Microsc. 200, 105–108 (2000).
    Google Scholar
  66. Albert, O., Sherman, L., Mourou, G. & Norris, T. B. Smart microscope: An adaptive optics learning system for aberration correction in multiphoton confocal microscopy. Opt. Lett. 25, 52–54 (2000).
    ADS Google Scholar
  67. Booth, M. J., Neil, M. A. A., Juškaitis, R. & Wilson, T. Adaptive aberration correction in a confocal microscope. Proc. Natl Acad. Sci. USA 99, 5788–5792 (2002).
    ADS Google Scholar
  68. Ji, N., Milkie, D. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods 7, 141–147 (2009).
    Google Scholar
  69. Leray, A. & Mertz, J. Rejection of two-photon fluorescence background in thick tissues by differential aberration imaging. Opt. Express 14, 10565–10573 (2006).
    ADS Google Scholar
  70. Girkin, J. M., Poland, S. & Wright, A. J. Adaptive optics for deeper imaging of biological samples. Curr. Opin. Biotechnol. 20, 106–110 (2009).
    Google Scholar
  71. Facomprez, A., Beaurepaire, E. & Débarre, D. Accuracy of correction in modal sensorless adaptive optics. Opt. Express 20, 2598–2612 (2012).
    ADS Google Scholar
  72. Bewersdorf, J., Pick, R. & Hell, S. W. Multifocal multiphoton microscopy. Opt. Lett. 23, 655–657 (1998).
    ADS Google Scholar
  73. Buist, A. H., Müller, M., Squier, J. & Brakenhoff, G. J. Real time two-photon absorption microscopy using multi point excitation. J. Microsc. 192, 217–226 (1998).
    Google Scholar
  74. Straub, M. & Hell, S. W. Multifocal multiphoton microscopy: A fast and efficient tool for 3-D fluorescence imaging. Bioimaging 6, 177–185 (1998).
    Google Scholar
  75. Egner, A. & Hell, S. W. Time multiplexing and parallelization in multifocal multiphoton microscopy. J. Opt. Soc. Am. A 17, 1192–201 (2000).
    ADS Google Scholar
  76. Nielsen, T., Fricke, M., Hellweg, D. & Andresen, P. High efficiency beam splitter for multifocal multiphoton microscopy. J. Microsc. 201, 368–376 (2001).
    MathSciNet Google Scholar
  77. Bahlmann, K. et al. Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz. Opt. Express 15, 10991–10998 (2007).
    ADS Google Scholar
  78. Niesner, R., Andresen, V., Neumann, J., Spiecker, H. & Gunzer, M. The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging. Biophys. J. 93, 2519–2529 (2007).
    ADS Google Scholar
  79. Kim, K. H. et al. Multifocal multiphoton microscopy based on multianode photomultiplier tubes. Opt. Express 15, 11658–11678 (2007).
    ADS Google Scholar
  80. Lee, A. M. D. et al. In vivo video rate multiphoton microscopy imaging of human skin. Opt. Lett. 36, 2865–2867 (2011).
    ADS Google Scholar
  81. Fan, G., Fujisaki, H., Miyakawi, A., Tsien, R. & Ellisman, M. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with chameleons. Biophys. J. 76, 2412–2420 (1999).
    Google Scholar
  82. Veilleux, I., Spencer, J. A., Biss, D. P., Côtè, D. & Lin, C. P. In vivo cell tracking with video rate multimodality laser scanning microscopy. IEEE J. Sel. Top. Quant. Electron. 14, 10–18 (2008).
    ADS Google Scholar
  83. Grewe, B. F., Voigt, F. F., van't Hoff, M. & Helmchen, F. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed. Opt. Express 2, 2035–2046 (2011).
    Google Scholar
  84. Bullen, A., Patel, S. & Saggau, P. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators. Biophys. J. 73, 477–491 (1997).
    Google Scholar
  85. Shao, Y. et al. Ultrafast, large-field multiphoton microscopy based on an acousto-optic deflector and a spatial light modulator. Opt. Lett. 37, 2532–2534 (2012).
    ADS Google Scholar
  86. Saloméa, R. et al. Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. J. Neurosci. Meth. 154, 161–74 (2006).
    Google Scholar
  87. Reddy, G. D., Kelleher, K., Fink, R. & Saggau, P. Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nature Neurosci. 11, 713–720 (2008).
    Google Scholar
  88. Koenig, K., Liang, H., Berns, M. & Tromberg, B. J. Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption. Opt. Lett. 21, 1090–1092 (1996).
    ADS Google Scholar
  89. Kirkby, P. A., Nadella, K. M. N. S. & Silver, R. A. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy. Opt. Express 18, 13721–13745 (2010).
    ADS Google Scholar
  90. Kremer, Y. et al. A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view. Opt. Express 16, 10066–10076 (2008).
    ADS Google Scholar
  91. Botcherby, E. J. et al. Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates. Proc. Natl Acad. Sci. USA 109, 2919–2924 (2012).
    ADS Google Scholar
  92. Brakenhoff, G. J. et al. Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system. J. Microsc. 181, 253–259 (1996).
    Google Scholar
  93. Oron, D., Tal, E. & Silberberg, Y. Scanningless depth-resolved microscopy. Opt. Express 13, 1468–1476 (2005).
    ADS Google Scholar
  94. Zhu, G., van Howe, J., Durst, M., Zipfel, W. R. & Xu, C. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express 13, 2153–2159 (2005).
    ADS Google Scholar
  95. Therrien, O. D., Aubé, B., Pagès, S., De Koninck, P. & Côtè, D. Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination. Biomed. Opt. Express 2, 696–704 (2011).
    Google Scholar
  96. Cheng, L. C. et al. Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning. Opt. Express 20, 8939–8948 (2012).
    ADS Google Scholar
  97. Durst, M. E., Zhu, G. & Xu, C. Simultaneous spatial and temporal focusing in nonlinear microscopy. Opt. Commun. 281, 1796–1805 (2008).
    ADS Google Scholar
  98. Durst, M. E., Straub, A. A. & Xu, C. Enhanced axial confinement of sum-frequency generation in a temporal focusing setup. Opt. Lett. 34, 1786–1788 (2009).
    ADS Google Scholar
  99. Mohanty, S. K. et al. In-depth activation of channelrhodopsin 2-sensitized excitable cells with high spatial resolution using two-photon excitation with a near-infrared laser microbeam. Biophys. J. 95, 3916–3926 (2008).
    ADS Google Scholar
  100. Andrasfalvy, B. K., Zemelman, B. V., Tang, J. & Vaziri, A. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc. Natl Acad. Sci. USA 107, 11981–11986 (2010).
    ADS Google Scholar
  101. Botcherby, E. J., Booth, M. J., Juškaitis, R. & Wilson, T. Real-time extended depth of field microscopy. Opt. Express 16, 21843–21848 (2008).
    ADS Google Scholar
  102. Botcherby, E. J., Booth, M. J., Juškaitis, R. & Wilson, T. Real-time slit scanning microscopy in the meridional plane. Opt. Lett. 34, 1504–1506 (2009).
    ADS Google Scholar
  103. Hoover, E. E. et al. Remote focusing for programmable multi-layer differential multiphoton microscopy. Biomed. Opt. Express 2, 113–122 (2010).
    Google Scholar
  104. Anselmi, F., Ventalon, C., Bègue, A., Ogden, D. & Emiliani, V. Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning. Proc. Natl Acad. Sci. USA 108, 19504–19509 (2011).
    ADS Google Scholar
  105. Hoover, E. E. et al. Eliminating the scattering ambiguity in multifocal, multimodal, multiphoton imaging systems. J. Biophoton. 5, 425–436 (2012).
    Google Scholar
  106. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated emission depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).
    ADS Google Scholar
  107. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).
    ADS Google Scholar
  108. Huang, B., Wenqin, W. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).
    ADS Google Scholar
  109. Hell, S. W., Schmidt, R. & Egner, A. Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nature Photon. 3, 381–387 (2009).
    ADS Google Scholar
  110. Wachsmann-Hogiu, S. & Farkas, D. L. Nonlinear multispectral optical imaging microscopy: Concepts, instrumentation, and applications in Handbook of Biomedical Nonlinear Optical Microscopy 461–480 (Oxford University, 2008).
    Google Scholar
  111. Truong, T., Supatto, W., Koos, D., Choi, J. & Fraser, S. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 8, 757–760 (2011).
    Google Scholar

Download references