Vacuum-stimulated cooling of single atoms in three dimensions (original) (raw)
References
Ye, J., Vernooy, D. W. & Kimble, H. J. Trapping of single atoms in cavity qed. Phys. Rev. Lett.83, 4987–4990 (1999). ArticleADS Google Scholar
McKeever, J. et al. State-insensitive cooling and trapping of single atoms in an optical cavity. Phys. Rev. Lett.90, 133602 (2003). ArticleADS Google Scholar
McKeever, J., Buck, J. R., Boozer, A. D. & Kimble, H. J. Determination of the number of atoms trapped in an optical cavity. Phys. Rev. Lett.93, 143601 (2004). ArticleADS Google Scholar
Boca, A. et al. Observation of the vacuum Rabi spectrum for one trapped atom. Phys. Rev. Lett.93, 233603 (2004). ArticleADS Google Scholar
Maunz, P. et al. Cavity cooling of a single atom. Nature428, 50–52 (2004). ArticleADS Google Scholar
Maunz, P. et al. Normal-mode spectroscopy of a single bound atom-cavity system. Phys. Rev. Lett.94, 033002 (2005). ArticleADS Google Scholar
Mossberg, T. W., Lewenstein, M. & Gauthier, D. J. Trapping and cooling of atoms in a vacuum perturbed in a frequency-dependent manner. Phys. Rev. Lett.67, 1723–1726 (1991). ArticleADS Google Scholar
Doherty, A. C., Parkins, A. S., Tan, S. M. & Walls, D. F. Motion of a two-level atom in an optical cavity. Phys. Rev. A56, 833–844 (1997). ArticleADS Google Scholar
Horak, P., Hechenblaikner, G., Gheri, K. M., Stecher, H. & Ritsch, H. Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett.79, 4974–4977 (1997). ArticleADS Google Scholar
Vuletić, V. & Chu, S. Laser cooling of atoms, ions, or molecules by coherent scattering. Phys. Rev. Lett.84, 3787–3790 (2000). ArticleADS Google Scholar
Vuletić, V., Chan, H. W. & Black, A. T. Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering. Phys. Rev. A64, 033405 (2001). ArticleADS Google Scholar
Domokos, P., Vukics, A. & Ritsch, H. Anomalous Doppler-effect and polariton-mediated cooling of two-level atoms. Phys. Rev. Lett.92, 103601 (2004). ArticleADS Google Scholar
Murr, K. On the suppression of the diffusion and the quantum nature of a cavity mode. Optical bistability: Forces and friction in driven cavities. J. Phys. B36, 2515–2537 (2003). ArticleADS Google Scholar
Guthörlein, G. R., Keller, M., Hayasaka, K., Lange, W. & Walther, H. A single ion as a nanoscopic probe of an optical field. Nature414, 49–51 (2001). ArticleADS Google Scholar
Mundt, A. B. et al. Coupling a single atomic quantum bit to a high finesse optical cavity. Phys. Rev. Lett.89, 103001 (2002). ArticleADS Google Scholar
Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev.69, 681 (1946). Article Google Scholar
Dalibard, J. & Cohen-Tannoudji, C. Dressed-atom approach to atomic motion in laser light: The dipole force revisited. J. Opt. Soc. Am. B2, 1707–1720 (1985). ArticleADS Google Scholar
Taïeb, R., Dum, R., Cirac, J. I., Marte, P. & Zoller, P. Cooling and localization of atoms in laser-induced potential wells. Phys. Rev. A49, 4876–4887 (1994). ArticleADS Google Scholar
Cohen-Tannoudji, C. in Fundamental Systems in Quantum Optics, Les Houches, Session LIII, 1990 (eds Dalibard, J., Raimond, J. M. & Zinn-Justin, J.) 1–164 (Elsevier Science, North-Holland, Amsterdam, 1992). Google Scholar
Cirac, J. I., Blatt, R., Parkins, A. S. & Zoller, P. Laser cooling of trapped ions with polarization gradients. Phys. Rev. A48, 1434–1445 (1993). ArticleADS Google Scholar
Cirac, J. I., Lewenstein, M. & Zoller, P. Laser cooling a trapped atom in a cavity: Bad cavity limit. Phys. Rev. A51, 1650–1655 (1995). ArticleADS Google Scholar