Vacuum-stimulated cooling of single atoms in three dimensions (original) (raw)

References

  1. Ye, J., Vernooy, D. W. & Kimble, H. J. Trapping of single atoms in cavity qed. Phys. Rev. Lett. 83, 4987–4990 (1999).
    Article ADS Google Scholar
  2. McKeever, J. et al. State-insensitive cooling and trapping of single atoms in an optical cavity. Phys. Rev. Lett. 90, 133602 (2003).
    Article ADS Google Scholar
  3. McKeever, J., Buck, J. R., Boozer, A. D. & Kimble, H. J. Determination of the number of atoms trapped in an optical cavity. Phys. Rev. Lett. 93, 143601 (2004).
    Article ADS Google Scholar
  4. Boca, A. et al. Observation of the vacuum Rabi spectrum for one trapped atom. Phys. Rev. Lett. 93, 233603 (2004).
    Article ADS Google Scholar
  5. Maunz, P. et al. Cavity cooling of a single atom. Nature 428, 50–52 (2004).
    Article ADS Google Scholar
  6. Maunz, P. et al. Normal-mode spectroscopy of a single bound atom-cavity system. Phys. Rev. Lett. 94, 033002 (2005).
    Article ADS Google Scholar
  7. Mossberg, T. W., Lewenstein, M. & Gauthier, D. J. Trapping and cooling of atoms in a vacuum perturbed in a frequency-dependent manner. Phys. Rev. Lett. 67, 1723–1726 (1991).
    Article ADS Google Scholar
  8. Doherty, A. C., Parkins, A. S., Tan, S. M. & Walls, D. F. Motion of a two-level atom in an optical cavity. Phys. Rev. A 56, 833–844 (1997).
    Article ADS Google Scholar
  9. Horak, P., Hechenblaikner, G., Gheri, K. M., Stecher, H. & Ritsch, H. Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett. 79, 4974–4977 (1997).
    Article ADS Google Scholar
  10. Vuletić, V. & Chu, S. Laser cooling of atoms, ions, or molecules by coherent scattering. Phys. Rev. Lett. 84, 3787–3790 (2000).
    Article ADS Google Scholar
  11. Vuletić, V., Chan, H. W. & Black, A. T. Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering. Phys. Rev. A 64, 033405 (2001).
    Article ADS Google Scholar
  12. Domokos, P., Vukics, A. & Ritsch, H. Anomalous Doppler-effect and polariton-mediated cooling of two-level atoms. Phys. Rev. Lett. 92, 103601 (2004).
    Article ADS Google Scholar
  13. Murr, K. On the suppression of the diffusion and the quantum nature of a cavity mode. Optical bistability: Forces and friction in driven cavities. J. Phys. B 36, 2515–2537 (2003).
    Article ADS Google Scholar
  14. Guthörlein, G. R., Keller, M., Hayasaka, K., Lange, W. & Walther, H. A single ion as a nanoscopic probe of an optical field. Nature 414, 49–51 (2001).
    Article ADS Google Scholar
  15. Mundt, A. B. et al. Coupling a single atomic quantum bit to a high finesse optical cavity. Phys. Rev. Lett. 89, 103001 (2002).
    Article ADS Google Scholar
  16. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).
    Article Google Scholar
  17. Dalibard, J. & Cohen-Tannoudji, C. Dressed-atom approach to atomic motion in laser light: The dipole force revisited. J. Opt. Soc. Am. B 2, 1707–1720 (1985).
    Article ADS Google Scholar
  18. Taïeb, R., Dum, R., Cirac, J. I., Marte, P. & Zoller, P. Cooling and localization of atoms in laser-induced potential wells. Phys. Rev. A 49, 4876–4887 (1994).
    Article ADS Google Scholar
  19. Cohen-Tannoudji, C. in Fundamental Systems in Quantum Optics, Les Houches, Session LIII, 1990 (eds Dalibard, J., Raimond, J. M. & Zinn-Justin, J.) 1–164 (Elsevier Science, North-Holland, Amsterdam, 1992).
    Google Scholar
  20. Cirac, J. I., Blatt, R., Parkins, A. S. & Zoller, P. Laser cooling of trapped ions with polarization gradients. Phys. Rev. A 48, 1434–1445 (1993).
    Article ADS Google Scholar
  21. Cirac, J. I., Lewenstein, M. & Zoller, P. Laser cooling a trapped atom in a cavity: Bad cavity limit. Phys. Rev. A 51, 1650–1655 (1995).
    Article ADS Google Scholar
  22. Zippilli, S. & Morigi, G. Cooling trapped atoms in optical resonators. Preprint at http://arxiv.org/quant-ph/0506030 (2005).

Download references