Spontaneous synchrony in power-grid networks (original) (raw)

References

  1. Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275–1335 (2008).
    Article ADS Google Scholar
  2. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008).
    Article ADS MathSciNet Google Scholar
  3. Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).
    Article ADS MATH Google Scholar
  4. Abrams, D. M. & Strogatz, S. H. Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004).
    Article ADS Google Scholar
  5. Ott, E. & Antonsen, T. M. Low dimensional behaviour of large systems of globally coupled oscillators. Chaos 18, 037113 (2008).
    Article ADS MathSciNet MATH Google Scholar
  6. Nishikawa, T. & Motter, A. E. Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions. Proc. Natl Acad. Sci. USA 107, 10342–10347 (2010).
    Article ADS Google Scholar
  7. Hagerstrom, A. M. et al. Experimental observation of chimeras in coupled-map lattices. Nature Phys. 8, 658–661 (2012).
    Article ADS Google Scholar
  8. Tinsley, M. R., Nkomo, S. & Showalter, K. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nature Phys. 8, 662–665 (2012).
    Article ADS Google Scholar
  9. Assenza, S., Gutiérrez, R., Gómez-Gardeñes, J., Latora, V. & Boccaletti, S. Emergence of structural patterns out of synchronization in networks with competitive interactions. Sci. Rep. 1, 99 (2011).
    Article ADS Google Scholar
  10. Ravoori, B. et al. Robustness of optimal synchronization in real networks. Phys. Rev. Lett. 107, 034102 (2011).
    Article ADS Google Scholar
  11. Hunt, D., Korniss, G. & Szymanski, B. K. Network synchronization in a noisy environment with time delays: Fundamental limits and trade-offs. Phys. Rev. Lett. 105, 068701 (2010).
    Article ADS Google Scholar
  12. Sun, J., Bollt, E. M. & Nishikawa, T. Master stability functions for coupled nearly identical dynamical systems. Europhys. Lett. 85, 60011 (2009).
    Article ADS Google Scholar
  13. Yu, W., Chen, G. & Lue, J. On pinning synchronization of complex dynamical networks. Automatica 45, 429–435 (2009).
    Article MathSciNet MATH Google Scholar
  14. Kiss, I. Z., Rusin, C. G., Kori, H. & Hudson, J. L. Engineering complex dynamical structures: Sequential patterns and desynchronization. Science 316, 1886–1889 (2007).
    Article ADS MathSciNet MATH Google Scholar
  15. Restrepo, J. G., Ott, E. & Hunt, B. R. The emergence of coherence in complex networks of heterogeneous dynamical systems. Phys. Rev. Lett. 96, 254103 (2006).
    Article ADS Google Scholar
  16. Strogatz, S. H., Abrams, D. M., McRobie, A., Eckhardt, B. & Ott, E. Crowd synchrony on the Millennium Bridge. Nature 438, 43–44 (2005).
    Article ADS Google Scholar
  17. Néda, Z., Ravasz, E., Brechet, Y., Vicsek, T. & Barabási, A-L. The sound of many hands clapping. Nature 403, 849–850 (2000).
    Article ADS Google Scholar
  18. Gellings, C. W. & Yeagee, K. E. Transforming the electric infrastructure. Phys. Today 57, 45–51 (2004).
    Article ADS Google Scholar
  19. Strogatz, S. H. SYNC: The Emerging Science of Spontaneous Order (Hyperion, 2003).
    Google Scholar
  20. Lozano, S., Buzna, L. & Dı´az-Guilera, A. Role of network topology in the synchronization of power systems. Eur. Phys. J. B 85, 1–8 (2012).
    Article Google Scholar
  21. Rohden, M., Sorge, A., Timme, M. & Witthaut, D. Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 109, 064101 (2012).
    Article ADS Google Scholar
  22. Susuki, Y. & Mezić, I. Nonlinear Koopman modes and coherency identification of coupled swing dynamics. IEEE T. Power Syst. 26, 1894–1904 (2011).
    Article Google Scholar
  23. Susuki, Y., Mezić, I. & Hikihara, T. Global swing instability in the New England power grid model. Proc. 2009 American Control Conf. 3446–3451 (IEEE, 2009).
    Chapter Google Scholar
  24. Parrilo, P. Model reduction for analysis of cascading failures in power systems. Proc. 1999 American Control Conf. 4208–4212 (IEEE, 1999).
    Google Scholar
  25. Dörfler, F. & Bullo, F. Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators. Proc. 2010 American Control Conf. 930–937 (IEEE, 2010).
    Chapter Google Scholar
  26. Dörfler, F. & Bullo, F. On the critical coupling for Kuramoto oscillators. SIAM J. Appl. Dyn. Syst. 10, 1070–1099 (2011).
    Article MathSciNet MATH Google Scholar
  27. Dörfler, F. & Bullo, F. Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators. SIAM J. Control Optim. 50, 1616–1642 (2012).
    Article MathSciNet MATH Google Scholar
  28. NERC System Disturbances Reports 1992–2009 (North American Electric Reliability Corporation, http://www.nerc.com).
  29. Grainger, J. J. & Stevenson, W. D. Jr Power System Analysis (McGraw-Hill, 2004).
    Google Scholar
  30. Anderson, P. M. & Fouad, A. A. Power System Control and Stability 2nd edn (IEEE Press-Wiley Interscience, 2003).
    Google Scholar
  31. Dörfler, F. & Bullo, F. Spectral analysis of synchronization in a lossless structure-preserving power network model. Proc. First IEEE Int. Conf. Smart Grid Communications 179–184 (IEEE, 2010).
    Google Scholar
  32. Nishikawa, T., Motter, A. E., Lai, Y-C. & Hoppensteadt, F. C. Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? Phys. Rev. Lett. 91, 014101 (2003).
    Article ADS Google Scholar
  33. Motter, A. E., Zhou, C. S. & Kurths, J. Enhancing complex-network synchronization. Europhys. Lett. 69, 334–340 (2005).
    Article ADS Google Scholar
  34. Pecora, L. M. & Carroll, T. L. Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998).
    Article ADS Google Scholar
  35. Fink, K. S., Johnson, G., Carroll, T., Mar, D. & Pecora, L. Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays. Phys. Rev. E 61, 5080–5090 (2000).
    Article ADS Google Scholar
  36. Gooi, H. B., Hill, E. F., Mobarak, M. A., Thorne, D. H. & Lee, T. H. Coordinated multi-machine stabilizer settings without eigenvalue drift. IEEE T. Power Ap. Syst. 100, 3879–3887 (1981).
    Article Google Scholar
  37. Dobson, I. et al. Avoiding and Suppressing Oscillations PSerc Publication 00–01 (Univ. of Wisconsin, 1999).
    Google Scholar
  38. Zhang, P., Chen, J. & Shao, M. Phasor Measurement Unit (PMU) Implementation and Applications (Electric Power Research Institute, 2007).
    Google Scholar
  39. Rinaldi, S. M., Peerenboom, J. P. & Kelly, T. K. Identifying, understanding, and analysing critical infrastructure interdependencies. IEEE Contr. Syst. Mag. 21, 11–25 (2001).
    Article Google Scholar
  40. Brede, M. Synchrony-optimized networks of non-identical Kuramoto oscillators. Phys. Lett. A 372, 2618–2622 (2008).
    Article ADS MATH Google Scholar
  41. Carareto, R., Orsatti, F. M. & Piqueira, J. R. C. Optimized network structure for full-synchronization. Commun. Nonlinear Sci. 14, 2536–2541 (2009).
    Article MathSciNet MATH Google Scholar
  42. Buzna, L., Lozano, S. & Díaz-Guilera, A. Synchronization in symmetric bipolar population networks. Phys. Rev. E 80, 066120 (2009).
    Article ADS Google Scholar
  43. Kelly, D. & Gottwald, G. A. On the topology of synchrony optimized networks of a Kuramoto-model with non-identical oscillators. Chaos 21, 025110 (2011).
    Article ADS MathSciNet MATH Google Scholar
  44. Gómez-Gardeñes, J., Gómez, S., Arenas, A. & Moreno, Y. Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett. 106, 128701 (2011).
    Article ADS Google Scholar
  45. Garlaschelli, D., Capocci, A. & Caldarelli, G. Self-organized network evolution coupled to extremal dynamics. Nature Phys. 3, 813–817 (2007).
    Article ADS MATH Google Scholar
  46. Milano, F. Power Systems Analysis Toolbox (Univ. Castilla, 2007).

Download references