Spontaneous synchrony in power-grid networks (original) (raw)
References
Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Critical phenomena in complex networks. Rev. Mod. Phys.80, 1275–1335 (2008). ArticleADS Google Scholar
Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. Synchronization in complex networks. Phys. Rep.469, 93–153 (2008). ArticleADSMathSciNet Google Scholar
Abrams, D. M. & Strogatz, S. H. Chimera states for coupled oscillators. Phys. Rev. Lett.93, 174102 (2004). ArticleADS Google Scholar
Ott, E. & Antonsen, T. M. Low dimensional behaviour of large systems of globally coupled oscillators. Chaos18, 037113 (2008). ArticleADSMathSciNetMATH Google Scholar
Nishikawa, T. & Motter, A. E. Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions. Proc. Natl Acad. Sci. USA107, 10342–10347 (2010). ArticleADS Google Scholar
Hagerstrom, A. M. et al. Experimental observation of chimeras in coupled-map lattices. Nature Phys.8, 658–661 (2012). ArticleADS Google Scholar
Tinsley, M. R., Nkomo, S. & Showalter, K. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nature Phys.8, 662–665 (2012). ArticleADS Google Scholar
Assenza, S., Gutiérrez, R., Gómez-Gardeñes, J., Latora, V. & Boccaletti, S. Emergence of structural patterns out of synchronization in networks with competitive interactions. Sci. Rep.1, 99 (2011). ArticleADS Google Scholar
Ravoori, B. et al. Robustness of optimal synchronization in real networks. Phys. Rev. Lett.107, 034102 (2011). ArticleADS Google Scholar
Hunt, D., Korniss, G. & Szymanski, B. K. Network synchronization in a noisy environment with time delays: Fundamental limits and trade-offs. Phys. Rev. Lett.105, 068701 (2010). ArticleADS Google Scholar
Sun, J., Bollt, E. M. & Nishikawa, T. Master stability functions for coupled nearly identical dynamical systems. Europhys. Lett.85, 60011 (2009). ArticleADS Google Scholar
Yu, W., Chen, G. & Lue, J. On pinning synchronization of complex dynamical networks. Automatica45, 429–435 (2009). ArticleMathSciNetMATH Google Scholar
Kiss, I. Z., Rusin, C. G., Kori, H. & Hudson, J. L. Engineering complex dynamical structures: Sequential patterns and desynchronization. Science316, 1886–1889 (2007). ArticleADSMathSciNetMATH Google Scholar
Restrepo, J. G., Ott, E. & Hunt, B. R. The emergence of coherence in complex networks of heterogeneous dynamical systems. Phys. Rev. Lett.96, 254103 (2006). ArticleADS Google Scholar
Strogatz, S. H., Abrams, D. M., McRobie, A., Eckhardt, B. & Ott, E. Crowd synchrony on the Millennium Bridge. Nature438, 43–44 (2005). ArticleADS Google Scholar
Néda, Z., Ravasz, E., Brechet, Y., Vicsek, T. & Barabási, A-L. The sound of many hands clapping. Nature403, 849–850 (2000). ArticleADS Google Scholar
Gellings, C. W. & Yeagee, K. E. Transforming the electric infrastructure. Phys. Today57, 45–51 (2004). ArticleADS Google Scholar
Strogatz, S. H. SYNC: The Emerging Science of Spontaneous Order (Hyperion, 2003). Google Scholar
Lozano, S., Buzna, L. & Dı´az-Guilera, A. Role of network topology in the synchronization of power systems. Eur. Phys. J. B85, 1–8 (2012). Article Google Scholar
Rohden, M., Sorge, A., Timme, M. & Witthaut, D. Self-organized synchronization in decentralized power grids. Phys. Rev. Lett.109, 064101 (2012). ArticleADS Google Scholar
Susuki, Y. & Mezić, I. Nonlinear Koopman modes and coherency identification of coupled swing dynamics. IEEE T. Power Syst.26, 1894–1904 (2011). Article Google Scholar
Susuki, Y., Mezić, I. & Hikihara, T. Global swing instability in the New England power grid model. Proc. 2009 American Control Conf. 3446–3451 (IEEE, 2009). Chapter Google Scholar
Parrilo, P. Model reduction for analysis of cascading failures in power systems. Proc. 1999 American Control Conf. 4208–4212 (IEEE, 1999). Google Scholar
Dörfler, F. & Bullo, F. Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators. Proc. 2010 American Control Conf. 930–937 (IEEE, 2010). Chapter Google Scholar
Dörfler, F. & Bullo, F. On the critical coupling for Kuramoto oscillators. SIAM J. Appl. Dyn. Syst.10, 1070–1099 (2011). ArticleMathSciNetMATH Google Scholar
Dörfler, F. & Bullo, F. Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators. SIAM J. Control Optim.50, 1616–1642 (2012). ArticleMathSciNetMATH Google Scholar
NERC System Disturbances Reports 1992–2009 (North American Electric Reliability Corporation, http://www.nerc.com).
Grainger, J. J. & Stevenson, W. D. Jr Power System Analysis (McGraw-Hill, 2004). Google Scholar
Anderson, P. M. & Fouad, A. A. Power System Control and Stability 2nd edn (IEEE Press-Wiley Interscience, 2003). Google Scholar
Dörfler, F. & Bullo, F. Spectral analysis of synchronization in a lossless structure-preserving power network model. Proc. First IEEE Int. Conf. Smart Grid Communications 179–184 (IEEE, 2010). Google Scholar
Nishikawa, T., Motter, A. E., Lai, Y-C. & Hoppensteadt, F. C. Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? Phys. Rev. Lett.91, 014101 (2003). ArticleADS Google Scholar
Motter, A. E., Zhou, C. S. & Kurths, J. Enhancing complex-network synchronization. Europhys. Lett.69, 334–340 (2005). ArticleADS Google Scholar
Pecora, L. M. & Carroll, T. L. Master stability functions for synchronized coupled systems. Phys. Rev. Lett.80, 2109–2112 (1998). ArticleADS Google Scholar
Fink, K. S., Johnson, G., Carroll, T., Mar, D. & Pecora, L. Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays. Phys. Rev. E61, 5080–5090 (2000). ArticleADS Google Scholar
Gooi, H. B., Hill, E. F., Mobarak, M. A., Thorne, D. H. & Lee, T. H. Coordinated multi-machine stabilizer settings without eigenvalue drift. IEEE T. Power Ap. Syst.100, 3879–3887 (1981). Article Google Scholar
Dobson, I. et al. Avoiding and Suppressing Oscillations PSerc Publication 00–01 (Univ. of Wisconsin, 1999). Google Scholar
Zhang, P., Chen, J. & Shao, M. Phasor Measurement Unit (PMU) Implementation and Applications (Electric Power Research Institute, 2007). Google Scholar
Rinaldi, S. M., Peerenboom, J. P. & Kelly, T. K. Identifying, understanding, and analysing critical infrastructure interdependencies. IEEE Contr. Syst. Mag.21, 11–25 (2001). Article Google Scholar
Brede, M. Synchrony-optimized networks of non-identical Kuramoto oscillators. Phys. Lett. A372, 2618–2622 (2008). ArticleADSMATH Google Scholar
Carareto, R., Orsatti, F. M. & Piqueira, J. R. C. Optimized network structure for full-synchronization. Commun. Nonlinear Sci.14, 2536–2541 (2009). ArticleMathSciNetMATH Google Scholar
Buzna, L., Lozano, S. & Díaz-Guilera, A. Synchronization in symmetric bipolar population networks. Phys. Rev. E80, 066120 (2009). ArticleADS Google Scholar
Kelly, D. & Gottwald, G. A. On the topology of synchrony optimized networks of a Kuramoto-model with non-identical oscillators. Chaos21, 025110 (2011). ArticleADSMathSciNetMATH Google Scholar
Gómez-Gardeñes, J., Gómez, S., Arenas, A. & Moreno, Y. Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett.106, 128701 (2011). ArticleADS Google Scholar
Garlaschelli, D., Capocci, A. & Caldarelli, G. Self-organized network evolution coupled to extremal dynamics. Nature Phys.3, 813–817 (2007). ArticleADSMATH Google Scholar
Milano, F. Power Systems Analysis Toolbox (Univ. Castilla, 2007).