Testing the limits of quantum mechanical superpositions (original) (raw)
References
Dowling, J. P. & Milburn, G. J. Quantum technology: The second quantum revolution. Phil. Trans. A361, 1655–1674 (2003). ADSMathSciNet Google Scholar
Zeilinger, A. Experiment and the foundations of quantum physics. Rev. Mod. Phys.71, S288–S297 (1999). Google Scholar
Trabesinger, A. Quantum simulation. Nature Phys.8, 263–263 (2012). ADS Google Scholar
Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature404, 247–255 (2000). ADSMATH Google Scholar
Southwell, K. Quantum coherence. Nature453, 1003–1003 (2008). ADS Google Scholar
Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Phys.5, 222–229 (2011). ADS Google Scholar
Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature464, 1170–1173 (2010). ADS Google Scholar
Gross, C., Zibold, T., Nicklas, E., Estève, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature464, 1165–1169 (2010). ADS Google Scholar
Haroche, S. Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys.85, 1083–1102 (2013). ADS Google Scholar
Wineland, D. J. Nobel Lecture: Superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys.85, 1103–1114 (2013). ADS Google Scholar
Joos, E. et al. Decoherence and the Appearance of a Classical World in Quantum Theory 2nd edition (Springer, 2003). Google Scholar
Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys.75, 715–775 (2003). ADSMathSciNetMATH Google Scholar
Laloë, F. Do We Really Understand Quantum Mechanics? (Cambridge Univ. Press, 2012). MATH Google Scholar
Fickler, R. et al. Quantum entanglement of high angular momenta. Science338, 640–643 (2012). ADS Google Scholar
Ma, X. S. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature489, 269–273 (2012). ADS Google Scholar
Kirchmair, G. et al. Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature495, 205–209 (2013). ADS Google Scholar
Monz, T. et al. 14-qubit entanglement: Creation. Phys. Rev. Lett.106, 130506 (2011). ADS Google Scholar
Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature413, 400–403 (2001). ADS Google Scholar
Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: An outlook. Science339, 1169–1174 (2013). ADS Google Scholar
Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature453, 1031–1042 (2008). ADS Google Scholar
Friedman, J., Patel, V., Chen, W., Tolpygo, S. & Lukens, J. Quantum superposition of distinct macroscopic states. Nature406, 43–46 (2000). ADS Google Scholar
Korsbakken, J., Wilhelm, F. & Whaley, K. The size of macroscopic superposition states in flux qubits. Europhys. Lett.89, 30003 (2010). ADS Google Scholar
Rauch, H., Treimer, W. & Bonse, U. Test of a single crystal neutron interferometer. Phys. Rev. A47, 369–371 (1974). Google Scholar
Zawisky, M., Baron, M., Loidl, R. & Rauch, H. Testing the world’s largest monolithic perfect crystal neutron interferometer. Nucl. Instrum. Methods Phys. Res. A481, 406–413 (2002). ADS Google Scholar
Nesvizhevsky, V. V. et al. Quantum states of neutrons in the earth’s gravitational field. Nature415, 298–300 (2002). ADS Google Scholar
Jenke, T., Geltenbort, P., Lemmel, H. & Abele, H. Realization of a gravity–resonance–spectroscopy technique. Nature Phys.7, 468–472 (2011). ADS Google Scholar
Gould, P. L., Ruff, G. A. & Pritchard, D. E. Diffraction of atoms by light: The near-resonant Kapitza–Dirac effect. Phys. Rev. Lett.56, 827–830 (1986). ADS Google Scholar
Keith, D. W., Schattenburg, M. L., Smith, H. I. & Pritchard, D. E. Diffraction of atoms by a transmission grating. Phys. Rev. Lett.61, 1580–1583 (1988). ADS Google Scholar
Bordé, C. Atomic interferometry with internal state labelling. Phys. Lett. A140, 10–12 (1989). ADS Google Scholar
Kasevich, M. & Chu, S. Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett.67, 181–184 (1991). ADS Google Scholar
Peters, A., Yeow-Chung, K. & Chu, S. Measurement of gravitational acceleration by dropping atoms. Nature400, 849–852 (1999). ADS Google Scholar
Stockton, J. K., Takase, K. & Kasevich, M. A. Absolute geodetic rotation measurement using atom interferometry. Phys. Rev. Lett.107, 133001 (2011). ADS Google Scholar
Hohensee, M., Chu, S., Peters, A. & Müller, H. Equivalence principle and gravitational redshift. Phys. Rev. Lett.106, 151102 (2011). ADS Google Scholar
Müller, H., Chiow, S-w., Long, Q., Herrmann, S. & Chu, S. Atom interferometry with up to 24-photon-momentum-transfer beam splitters. Phys. Rev. Lett.100, 180405 (2008). ADS Google Scholar
Chiow, S., Kovachy, T., Chien, H. & Kasevich, M. 102_ℏk_ large area atom interferometers. Phys. Rev. Lett.107, 130403 (2011). ADS Google Scholar
Müntinga, H. et al. Interferometry with Bose–Einstein condensates in microgravity. Phys. Rev. Lett.110, 093602 (2013). ADS Google Scholar
Dickerson, S. M., Hogan, J. M., Sugarbaker, A., Johnson, D. M. S. & Kasevich, M. A. Multiaxis inertial sensing with long-time point source atom interferometry. Phys. Rev. Lett.111, 083001 (2013). ADS Google Scholar
Dimopoulos, S., Graham, P., Hogan, J. & Kasevich, M. Testing general relativity with atom interferometry. Phys. Rev. Lett.98, 1–4 (2007). Google Scholar
Bouyer, P. & Landragin, A. Interférométrie atomique et gravitation: du sol à l’espace. Journées de l’action spécifique GRAM (Gravitation, Références, Astronomie, Métrologie) (Nice, France, 2010).
Nimmrichter, S. & Hornberger, K. Macroscopicity of mechanical quantum superposition states. Phys. Rev. Lett.110, 160403 (2013). ADS Google Scholar
Percival, I. C. & Strunz, W. T. Detection of spacetime fluctuation by a model interferometer. Proc. R. Soc. Lond. A453, 431–446 (1997). ADS Google Scholar
Sherson, J. et al. Quantum teleportation between light and matter. Nature443, 557–560 (2006). ADS Google Scholar
Arndt, M. et al. Wave-particle duality of C60 molecules. Nature401, 680–682 (1999). ADS Google Scholar
Gerlich, S. et al. A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules. Nature Phys.3, 711–715 (2007). ADS Google Scholar
Haslinger, P. et al. A universal matter-wave interferometer with optical ionization gratings in the time domain. Nature Phys.9, 144–148 (2013). ADS Google Scholar
Kiesel, N. et al. Cavity cooling of an optically levitated nanoparticle. Proc. Natl Acad. Sci. USA110, 14180–14185 (2013). ADS Google Scholar
Asenbaum, P., Kuhn, S., Nimmrichter, S., Sezer, U. & Arndt, M. Cavity cooling of free silicon nanoparticles in high-vacuum. Nature Commun.4, 2743 (2013). ADS Google Scholar
Clauser, J. in Experimental Metaphysics (eds Cohen, R. S., Horne, M. & Stachel, J.) 1–11 (Kluwer Academic, 1997). Google Scholar
Juffmann, T. et al. Wave and particle in molecular interference lithography. Phys. Rev. Lett.103, 263601 (2009). ADS Google Scholar
Juffmann, T. et al. Real-time single-molecule imaging of quantum interference. Nature Nanotech.7, 297–300 (2012). ADS Google Scholar
Reiger, E., Hackermüller, L., Berninger, M. & Arndt, M. Exploration of gold nanoparticle beams for matter wave interferometry. Opt. Commun.264, 326–332 (2006). ADS Google Scholar
Nimmrichter, S., Hornberger, K., Haslinger, P. & Arndt, M. Testing spontaneous localization theories with matter-wave interferometry. Phys. Rev. A83, 043621 (2011). ADS Google Scholar
Nimmrichter, S., Haslinger, P., Hornberger, K. & Arndt, M. Concept of an ionizing time-domain matter-wave interferometer. New J. Phys.13, 075002 (2011). ADS Google Scholar
Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M. & Tüxen, J. Matter-wave interference of particles selected from a molecular library with masses exceeding 10 000 amu. Phys. Chem. Chem. Phys.15, 14696–14700 (2013). Google Scholar
Berninger, M., Stéfanov, A., Deachapunya, S. & Arndt, M. Polarizability measurements in a molecule near-field interferometer. Phys. Rev. A76, 013607 (2007). ADS Google Scholar
Gerlich, S. et al. Matter-wave metrology as a complementary tool for mass spectrometry. Angew. Chem-Int. Ed.47, 6195–6198 (2008). Google Scholar
Tüxen, J., Gerlich, S., Eibenberger, S., Arndt, M. & Mayor, M. De Broglie interference distinguishes between constitutional isomers. Chem. Commun.46, 4145–4147 (2010). Google Scholar
Niering, M. et al. Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock. Phys. Rev. Lett.84, 5496–5499 (2000). ADS Google Scholar
Odom, B., Hanneke, D., D’Urso, B. & Gabrielse, G. New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett.97, 030801 (2006). ADS Google Scholar
Freedman, S. J. & Clauser, J. F. Experimental test of local hidden-variable theories. Phys. Rev. Lett.28, 938–941 (1972). ADS Google Scholar
Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time- varying analyzers. Phys. Rev. Lett.49, 1804–1807 (1982). ADSMathSciNet Google Scholar
Giustina, M. et al. Bell violation with entangled photons, free of the fair-sampling assumption. Nature497, 227–230 (2013). ADS Google Scholar
Abbott, B. et al. Observation of a kilogram-scale oscillator near its quantum ground state. New J. Phys.11, 073032 (2009). ADS Google Scholar
Das, S. & Vagenas, E. C. Universality of quantum gravity corrections. Phys. Rev. Lett.101, 221301 (2008). ADS Google Scholar
Bojowald, M. & Kempf, A. Generalized uncertainty principles and localization of a particle in discrete space. Phys. Rev. D86, 085017 (2012). ADS Google Scholar
Pikovski, I., Vanner, M. R., Aspelmeyer, M., Kim, M. & Brukner, Č. Probing Planck-scale physics with quantum optics. Nature Phys.8, 393–397 (2012). ADS Google Scholar
Marin, F. et al. Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables. Nature Phys.9, 71–73 (2012). ADS Google Scholar
Gambini, R., Porto, R. A. & Pullin, J. Realistic clocks, universal decoherence, and the black hole information paradox. Phys. Rev. Lett.93, 240401 (2004). ADSMathSciNet Google Scholar
Milburn, G. J. Lorentz invariant intrinsic decoherence. New J. Phys.8, 96 (2006). ADS Google Scholar
Wang, C. H-T., Bingham, R. & Mendonça, J. T. Quantum gravitational decoherence of matter waves. Class. Quantum Gravity23, L59–L65 (2006). MathSciNetMATH Google Scholar
Bassi, A., Lochan, K., Satin, S., Singh, T. P. & Ulbricht, H. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys.85, 471–527 (2013). ADS Google Scholar
Yang, H., Miao, H., Lee, D-S., Helou, B. & Chen, Y. Macroscopic quantum mechanics in a classical spacetime. Phys. Rev. Lett.110, 170401 (2013). ADS Google Scholar
Giulini, D. & Großardt, A. The Schrödinger-Newton equation as a non-relativistic limit of self-gravitating Klein-Gordon and Dirac fields. Class. Quantum Gravity29, 215010 (2012). ADSMATH Google Scholar
Gisin, N. Stochastic quantum dynamics and relativity. Helv. Phys. Acta62, 363–371 (1989). MathSciNet Google Scholar
Diósi, L. A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A120, 377–381 (1987). ADSMathSciNet Google Scholar
Ghirardi, G. C., Pearle, P. & Rimini, A. Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A42, 78–89 (1990). ADSMathSciNet Google Scholar
Adler, S. L. Quantum Theory as an Emergent Phenomenon (Cambridge Univ. Press, 2004). Google Scholar
Leggett, A. J. Testing the limits of quantum mechanics: Motivation, state of play, prospects. J. Phys. Condens. Mater.14, R415–R451 (2002). ADS Google Scholar
Feldmann, W. & Tumulka, R. Parameter diagrams of the GRW and CSL theories of wavefunction collapse. J. Phys. A45, 065304 (2012). ADSMathSciNetMATH Google Scholar
Penrose, R. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit.28, 581–600 (1996). ADSMathSciNetMATH Google Scholar
Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett.91, 130401 (2003). ADSMathSciNet Google Scholar
Bose, S., Jacobs, K. & Knight, P. Scheme to probe the decoherence of a macroscopic object. Phys. Rev. A59, 3204–3210 (1999). ADS Google Scholar
Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature475, 359–363 (2011). ADS Google Scholar
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature478, 89–92 (2011). ADS Google Scholar
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Preprint at http://arxiv.org/abs/1303.0733 (2013).
O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature464, 697–703 (2010). ADS Google Scholar
Chang, D. E. et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA107, 1005–1010 (2010). ADS Google Scholar
Romero-Isart, O., Juan, M. L., Quidant, R. & Cirac, J. I. Toward quantum superposition of living organisms. New J. Phys.12, 033015 (2010). ADS Google Scholar
Barker, P. F. & Shneider, M. N. Cavity cooling of an optically trapped nanoparticle. Phys. Rev. A81, 023826 (2010). ADS Google Scholar
Romero-Isart, O. et al. Large quantum superpositions and interference of massive nanometer-sized objects. Phys. Rev. Lett.107, 020405 (2011). ADS Google Scholar
Hornberger, K., Gerlich, S., Haslinger, P., Nimmrichter, S. & Arndt, M. Colloquium: Quantum interference of clusters and molecules. Rev. Mod. Phys.84, 157–173 (2012). ADS Google Scholar
Li, T., Kheifets, S. & Raizen, M. G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys.7, 527–530 (2011). ADS Google Scholar
Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett.109, 103603 (2012). ADS Google Scholar
Dür, W., Simon, C. & Cirac, J. I. Effective size of certain macroscopic quantum superpositions. Phys. Rev. Lett.89, 210402 (2002). ADS Google Scholar
Björk, G. & Mana, P. A size criterion for macroscopic superposition states. J. Opt. B6, 429–436 (2004). ADS Google Scholar
Korsbakken, J. I., Whaley, K. B., Dubois, J. & Cirac, J. I. Measurement-based measure of the size of macroscopic quantum superpositions. Phys. Rev. A75, 042106 (2007). ADS Google Scholar
Marquardt, F., Abel, B. & von Delft, J. Measuring the size of a quantum superposition of many-body states. Phys. Rev. A78, 012109 (2008). ADS Google Scholar
Lee, C-W. & Jeong, H. Quantification of macroscopic quantum superpositions within phase space. Phys. Rev. Lett.106, 220401 (2011). ADS Google Scholar
Fröwis, F. & Dür, W. Measures of macroscopicity for quantum spin systems. New J. Phys.14, 093039 (2012). ADS Google Scholar
Kohstall, C. et al. Observation of interference between two molecular Bose–Einstein condensates. New J. Phys.13, 065027 (2011). ADS Google Scholar