Testing the limits of quantum mechanical superpositions (original) (raw)

References

  1. Dowling, J. P. & Milburn, G. J. Quantum technology: The second quantum revolution. Phil. Trans. A 361, 1655–1674 (2003).
    ADS MathSciNet Google Scholar
  2. Zeilinger, A. Experiment and the foundations of quantum physics. Rev. Mod. Phys. 71, S288–S297 (1999).
    Google Scholar
  3. Trabesinger, A. Quantum simulation. Nature Phys. 8, 263–263 (2012).
    ADS Google Scholar
  4. Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature 404, 247–255 (2000).
    ADS MATH Google Scholar
  5. Southwell, K. Quantum coherence. Nature 453, 1003–1003 (2008).
    ADS Google Scholar
  6. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Phys. 5, 222–229 (2011).
    ADS Google Scholar
  7. Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).
    ADS Google Scholar
  8. Gross, C., Zibold, T., Nicklas, E., Estève, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).
    ADS Google Scholar
  9. Haroche, S. Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083–1102 (2013).
    ADS Google Scholar
  10. Wineland, D. J. Nobel Lecture: Superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103–1114 (2013).
    ADS Google Scholar
  11. Joos, E. et al. Decoherence and the Appearance of a Classical World in Quantum Theory 2nd edition (Springer, 2003).
    Google Scholar
  12. Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).
    ADS MathSciNet MATH Google Scholar
  13. Laloë, F. Do We Really Understand Quantum Mechanics? (Cambridge Univ. Press, 2012).
    MATH Google Scholar
  14. Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).
    ADS Google Scholar
  15. Ma, X. S. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012).
    ADS Google Scholar
  16. Kirchmair, G. et al. Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature 495, 205–209 (2013).
    ADS Google Scholar
  17. Monz, T. et al. 14-qubit entanglement: Creation. Phys. Rev. Lett. 106, 130506 (2011).
    ADS Google Scholar
  18. Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).
    ADS Google Scholar
  19. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: An outlook. Science 339, 1169–1174 (2013).
    ADS Google Scholar
  20. Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).
    ADS Google Scholar
  21. Friedman, J., Patel, V., Chen, W., Tolpygo, S. & Lukens, J. Quantum superposition of distinct macroscopic states. Nature 406, 43–46 (2000).
    ADS Google Scholar
  22. Korsbakken, J., Wilhelm, F. & Whaley, K. The size of macroscopic superposition states in flux qubits. Europhys. Lett. 89, 30003 (2010).
    ADS Google Scholar
  23. Rauch, H., Treimer, W. & Bonse, U. Test of a single crystal neutron interferometer. Phys. Rev. A 47, 369–371 (1974).
    Google Scholar
  24. Zawisky, M., Baron, M., Loidl, R. & Rauch, H. Testing the world’s largest monolithic perfect crystal neutron interferometer. Nucl. Instrum. Methods Phys. Res. A 481, 406–413 (2002).
    ADS Google Scholar
  25. Nesvizhevsky, V. V. et al. Quantum states of neutrons in the earth’s gravitational field. Nature 415, 298–300 (2002).
    ADS Google Scholar
  26. Jenke, T., Geltenbort, P., Lemmel, H. & Abele, H. Realization of a gravity–resonance–spectroscopy technique. Nature Phys. 7, 468–472 (2011).
    ADS Google Scholar
  27. Gould, P. L., Ruff, G. A. & Pritchard, D. E. Diffraction of atoms by light: The near-resonant Kapitza–Dirac effect. Phys. Rev. Lett. 56, 827–830 (1986).
    ADS Google Scholar
  28. Keith, D. W., Schattenburg, M. L., Smith, H. I. & Pritchard, D. E. Diffraction of atoms by a transmission grating. Phys. Rev. Lett. 61, 1580–1583 (1988).
    ADS Google Scholar
  29. Bordé, C. Atomic interferometry with internal state labelling. Phys. Lett. A 140, 10–12 (1989).
    ADS Google Scholar
  30. Kasevich, M. & Chu, S. Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181–184 (1991).
    ADS Google Scholar
  31. Peters, A., Yeow-Chung, K. & Chu, S. Measurement of gravitational acceleration by dropping atoms. Nature 400, 849–852 (1999).
    ADS Google Scholar
  32. Stockton, J. K., Takase, K. & Kasevich, M. A. Absolute geodetic rotation measurement using atom interferometry. Phys. Rev. Lett. 107, 133001 (2011).
    ADS Google Scholar
  33. Hohensee, M., Chu, S., Peters, A. & Müller, H. Equivalence principle and gravitational redshift. Phys. Rev. Lett. 106, 151102 (2011).
    ADS Google Scholar
  34. Müller, H., Chiow, S-w., Long, Q., Herrmann, S. & Chu, S. Atom interferometry with up to 24-photon-momentum-transfer beam splitters. Phys. Rev. Lett. 100, 180405 (2008).
    ADS Google Scholar
  35. Chiow, S., Kovachy, T., Chien, H. & Kasevich, M. 102_ℏk_ large area atom interferometers. Phys. Rev. Lett. 107, 130403 (2011).
    ADS Google Scholar
  36. Müntinga, H. et al. Interferometry with Bose–Einstein condensates in microgravity. Phys. Rev. Lett. 110, 093602 (2013).
    ADS Google Scholar
  37. Dickerson, S. M., Hogan, J. M., Sugarbaker, A., Johnson, D. M. S. & Kasevich, M. A. Multiaxis inertial sensing with long-time point source atom interferometry. Phys. Rev. Lett. 111, 083001 (2013).
    ADS Google Scholar
  38. Dimopoulos, S., Graham, P., Hogan, J. & Kasevich, M. Testing general relativity with atom interferometry. Phys. Rev. Lett. 98, 1–4 (2007).
    Google Scholar
  39. Bouyer, P. & Landragin, A. Interférométrie atomique et gravitation: du sol à l’espace. Journées de l’action spécifique GRAM (Gravitation, Références, Astronomie, Métrologie) (Nice, France, 2010).
  40. Nimmrichter, S. & Hornberger, K. Macroscopicity of mechanical quantum superposition states. Phys. Rev. Lett. 110, 160403 (2013).
    ADS Google Scholar
  41. Percival, I. C. & Strunz, W. T. Detection of spacetime fluctuation by a model interferometer. Proc. R. Soc. Lond. A 453, 431–446 (1997).
    ADS Google Scholar
  42. Sherson, J. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).
    ADS Google Scholar
  43. Arndt, M. et al. Wave-particle duality of C60 molecules. Nature 401, 680–682 (1999).
    ADS Google Scholar
  44. Gerlich, S. et al. A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules. Nature Phys. 3, 711–715 (2007).
    ADS Google Scholar
  45. Haslinger, P. et al. A universal matter-wave interferometer with optical ionization gratings in the time domain. Nature Phys. 9, 144–148 (2013).
    ADS Google Scholar
  46. Kiesel, N. et al. Cavity cooling of an optically levitated nanoparticle. Proc. Natl Acad. Sci. USA 110, 14180–14185 (2013).
    ADS Google Scholar
  47. Asenbaum, P., Kuhn, S., Nimmrichter, S., Sezer, U. & Arndt, M. Cavity cooling of free silicon nanoparticles in high-vacuum. Nature Commun. 4, 2743 (2013).
    ADS Google Scholar
  48. Clauser, J. in Experimental Metaphysics (eds Cohen, R. S., Horne, M. & Stachel, J.) 1–11 (Kluwer Academic, 1997).
    Google Scholar
  49. Juffmann, T. et al. Wave and particle in molecular interference lithography. Phys. Rev. Lett. 103, 263601 (2009).
    ADS Google Scholar
  50. Juffmann, T. et al. Real-time single-molecule imaging of quantum interference. Nature Nanotech. 7, 297–300 (2012).
    ADS Google Scholar
  51. Reiger, E., Hackermüller, L., Berninger, M. & Arndt, M. Exploration of gold nanoparticle beams for matter wave interferometry. Opt. Commun. 264, 326–332 (2006).
    ADS Google Scholar
  52. Nimmrichter, S., Hornberger, K., Haslinger, P. & Arndt, M. Testing spontaneous localization theories with matter-wave interferometry. Phys. Rev. A 83, 043621 (2011).
    ADS Google Scholar
  53. Nimmrichter, S., Haslinger, P., Hornberger, K. & Arndt, M. Concept of an ionizing time-domain matter-wave interferometer. New J. Phys. 13, 075002 (2011).
    ADS Google Scholar
  54. Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M. & Tüxen, J. Matter-wave interference of particles selected from a molecular library with masses exceeding 10 000 amu. Phys. Chem. Chem. Phys. 15, 14696–14700 (2013).
    Google Scholar
  55. Berninger, M., Stéfanov, A., Deachapunya, S. & Arndt, M. Polarizability measurements in a molecule near-field interferometer. Phys. Rev. A 76, 013607 (2007).
    ADS Google Scholar
  56. Gerlich, S. et al. Matter-wave metrology as a complementary tool for mass spectrometry. Angew. Chem-Int. Ed. 47, 6195–6198 (2008).
    Google Scholar
  57. Tüxen, J., Gerlich, S., Eibenberger, S., Arndt, M. & Mayor, M. De Broglie interference distinguishes between constitutional isomers. Chem. Commun. 46, 4145–4147 (2010).
    Google Scholar
  58. Niering, M. et al. Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock. Phys. Rev. Lett. 84, 5496–5499 (2000).
    ADS Google Scholar
  59. Odom, B., Hanneke, D., D’Urso, B. & Gabrielse, G. New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett. 97, 030801 (2006).
    ADS Google Scholar
  60. Freedman, S. J. & Clauser, J. F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972).
    ADS Google Scholar
  61. Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time- varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).
    ADS MathSciNet Google Scholar
  62. Giustina, M. et al. Bell violation with entangled photons, free of the fair-sampling assumption. Nature 497, 227–230 (2013).
    ADS Google Scholar
  63. Abbott, B. et al. Observation of a kilogram-scale oscillator near its quantum ground state. New J. Phys. 11, 073032 (2009).
    ADS Google Scholar
  64. Das, S. & Vagenas, E. C. Universality of quantum gravity corrections. Phys. Rev. Lett. 101, 221301 (2008).
    ADS Google Scholar
  65. Bojowald, M. & Kempf, A. Generalized uncertainty principles and localization of a particle in discrete space. Phys. Rev. D 86, 085017 (2012).
    ADS Google Scholar
  66. Pikovski, I., Vanner, M. R., Aspelmeyer, M., Kim, M. & Brukner, Č. Probing Planck-scale physics with quantum optics. Nature Phys. 8, 393–397 (2012).
    ADS Google Scholar
  67. Marin, F. et al. Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables. Nature Phys. 9, 71–73 (2012).
    ADS Google Scholar
  68. Gambini, R., Porto, R. A. & Pullin, J. Realistic clocks, universal decoherence, and the black hole information paradox. Phys. Rev. Lett. 93, 240401 (2004).
    ADS MathSciNet Google Scholar
  69. Milburn, G. J. Lorentz invariant intrinsic decoherence. New J. Phys. 8, 96 (2006).
    ADS Google Scholar
  70. Wang, C. H-T., Bingham, R. & Mendonça, J. T. Quantum gravitational decoherence of matter waves. Class. Quantum Gravity 23, L59–L65 (2006).
    MathSciNet MATH Google Scholar
  71. Bassi, A., Lochan, K., Satin, S., Singh, T. P. & Ulbricht, H. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471–527 (2013).
    ADS Google Scholar
  72. Yang, H., Miao, H., Lee, D-S., Helou, B. & Chen, Y. Macroscopic quantum mechanics in a classical spacetime. Phys. Rev. Lett. 110, 170401 (2013).
    ADS Google Scholar
  73. Giulini, D. & Großardt, A. The Schrödinger-Newton equation as a non-relativistic limit of self-gravitating Klein-Gordon and Dirac fields. Class. Quantum Gravity 29, 215010 (2012).
    ADS MATH Google Scholar
  74. Gisin, N. Stochastic quantum dynamics and relativity. Helv. Phys. Acta 62, 363–371 (1989).
    MathSciNet Google Scholar
  75. Diósi, L. A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A 120, 377–381 (1987).
    ADS MathSciNet Google Scholar
  76. Ghirardi, G. C., Pearle, P. & Rimini, A. Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78–89 (1990).
    ADS MathSciNet Google Scholar
  77. Bassi, A. & Ghirardi, G. Dynamical reduction models. Phys. Rep. 379, 257–426 (2003).
    ADS MathSciNet MATH Google Scholar
  78. Adler, S. L. Quantum Theory as an Emergent Phenomenon (Cambridge Univ. Press, 2004).
    Google Scholar
  79. Leggett, A. J. Testing the limits of quantum mechanics: Motivation, state of play, prospects. J. Phys. Condens. Mater. 14, R415–R451 (2002).
    ADS Google Scholar
  80. Feldmann, W. & Tumulka, R. Parameter diagrams of the GRW and CSL theories of wavefunction collapse. J. Phys. A 45, 065304 (2012).
    ADS MathSciNet MATH Google Scholar
  81. Penrose, R. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996).
    ADS MathSciNet MATH Google Scholar
  82. Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).
    ADS MathSciNet Google Scholar
  83. Bose, S., Jacobs, K. & Knight, P. Scheme to probe the decoherence of a macroscopic object. Phys. Rev. A 59, 3204–3210 (1999).
    ADS Google Scholar
  84. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).
    ADS Google Scholar
  85. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).
    ADS Google Scholar
  86. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Preprint at http://arxiv.org/abs/1303.0733 (2013).
  87. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).
    ADS Google Scholar
  88. Chang, D. E. et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA 107, 1005–1010 (2010).
    ADS Google Scholar
  89. Romero-Isart, O., Juan, M. L., Quidant, R. & Cirac, J. I. Toward quantum superposition of living organisms. New J. Phys. 12, 033015 (2010).
    ADS Google Scholar
  90. Barker, P. F. & Shneider, M. N. Cavity cooling of an optically trapped nanoparticle. Phys. Rev. A 81, 023826 (2010).
    ADS Google Scholar
  91. Romero-Isart, O. et al. Large quantum superpositions and interference of massive nanometer-sized objects. Phys. Rev. Lett. 107, 020405 (2011).
    ADS Google Scholar
  92. Hornberger, K., Gerlich, S., Haslinger, P., Nimmrichter, S. & Arndt, M. Colloquium: Quantum interference of clusters and molecules. Rev. Mod. Phys. 84, 157–173 (2012).
    ADS Google Scholar
  93. Li, T., Kheifets, S. & Raizen, M. G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys. 7, 527–530 (2011).
    ADS Google Scholar
  94. Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).
    ADS Google Scholar
  95. Dür, W., Simon, C. & Cirac, J. I. Effective size of certain macroscopic quantum superpositions. Phys. Rev. Lett. 89, 210402 (2002).
    ADS Google Scholar
  96. Björk, G. & Mana, P. A size criterion for macroscopic superposition states. J. Opt. B 6, 429–436 (2004).
    ADS Google Scholar
  97. Korsbakken, J. I., Whaley, K. B., Dubois, J. & Cirac, J. I. Measurement-based measure of the size of macroscopic quantum superpositions. Phys. Rev. A 75, 042106 (2007).
    ADS Google Scholar
  98. Marquardt, F., Abel, B. & von Delft, J. Measuring the size of a quantum superposition of many-body states. Phys. Rev. A 78, 012109 (2008).
    ADS Google Scholar
  99. Lee, C-W. & Jeong, H. Quantification of macroscopic quantum superpositions within phase space. Phys. Rev. Lett. 106, 220401 (2011).
    ADS Google Scholar
  100. Fröwis, F. & Dür, W. Measures of macroscopicity for quantum spin systems. New J. Phys. 14, 093039 (2012).
    ADS Google Scholar
  101. Kohstall, C. et al. Observation of interference between two molecular Bose–Einstein condensates. New J. Phys. 13, 065027 (2011).
    ADS Google Scholar

Download references