Gaff, D. F. Desiccation-tolerant flowering plants in Southern Africa. Science174, 1033–1034 (1971). Google Scholar
Porembski, S. in Plant Desiccation Tolerance Vol. 215 (eds Lüttge, U., Beck, E. & Bartels, D. ) 139–156 (Springer, 2011). Google Scholar
Jönsson, K. I. & Järemo, J. A model on the evolution of cryptobiosis. Ann. Zool. Fennici.40, 331–34040 (2003). Google Scholar
Alpert, P. Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J. Exp. Biol.209, 1575–1584 (2006). Google Scholar
Oliver, M. J., Tuba, Z. & Mishler, B. D. The evolution of vegetative desiccation tolerance in land plants. Plant Ecol.151, 85–100 (2000). Google Scholar
Oliver, M. J., Velten, J. & Mishler, B. D. Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr. Comp. Biol.45, 788–799 (2005). Google Scholar
Farrant, J. M. et al. A molecular physiological review of vegetative desiccation tolerance in the resurrection plant Xerophyta viscosa (Baker). Planta242, 407–426 (2015). Google Scholar
Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change3, 52–58 (2013). Google Scholar
Chin, C.-S. et al. Phased diploid genome assembly with single molecule real-time sequencing. Nat. Methods13, 1050–1054 (2016). Google Scholar
Song, L., Florea, L. & Langmead, B. Lighter: fast and memory-efficient sequencing error correction without counting. Genome Biol.15, 509 (2014). Google Scholar
Ye, C. et al. Exploiting sparseness in de novo genome assembly. BMC Bioinformatics13, S1 (2012). Google Scholar
Ye, C., Hill, C., Wu, S., Ruan, J. & Ma, Z. DBG2OLC: efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies. Sci. Rep.6, 31900 (2016). Google Scholar
Boetzer, M. et al. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinformatics15, 211 (2014). Google Scholar
Yoshida, K. et al. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife2, e00731 (2013). Google Scholar
de Melo, N. F. et al. Cytogenetics and cytotaxonomy of velloziaceae. Plant Syst. Evol.204, 257–273 (1997). Google Scholar
VanBuren, R. et al. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature527, 508–511 (2015). Google Scholar
Xiao, L. et al. The resurrection genome of Boea hygrometrica: a blueprint for survival of dehydration. Proc. Natl Acad. Sci. USA112, 5833–5837 (2015). Google Scholar
Yasui, Y. et al. Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Res.23, 535–546 (2016). Google Scholar
Šmarda, P. et al. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc. Natl Acad. Sci. USA111, E4096–E4102 (2014). Google Scholar
Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res.31, 365–370 (2003). Google Scholar
Mitchell, A. et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res.43, D213–D221 (2015). Google Scholar
Wilson, G. A. et al. Orphans as taxonomically restricted and ecologically important genes. Microbiology151, 2499–2501 (2005). Google Scholar
Hilbricht, T. et al. Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phytol.179, 877–887 (2008). Google Scholar
Cannarozzi, G. et al. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). BMC Genomics15, 581 (2014). Google Scholar
Gaff, D. F. & Oliver, M. J. The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. Funct. Plant Biol.40, 315–328 (2013). Google Scholar
Mundree, S. G. & Farrant, J. M. in Plant Tolerance to Abiotic Stress in Agriculture: Role of Genetic Engineering (eds Cherry, J. H., Locy, R. D. & Rychter, A. ) 201–222 (Springer, 2000). Google Scholar
Gaff, D. F. & Loveys, B. Abscisic acid levels in drying plants of a resurrection grass. Trans. Malaysian Soc. Plant Physiol.3, 286–287 (1993). Google Scholar
Farrant, J. M., Cooper, K., Dace, H. J. W., Bentely, J. & Hilgart, A. in Plant Stress Physiology (ed Shabala, S. ) 217–252 (CAB International, 2016). Google Scholar
Bewley, J. D. Physiological aspects of desiccation tolerance. Annu. Rev. Plant Physiol.30, 195–238 (1979). Google Scholar
Csintalan, Z., Tuba, Z., Lichtenthaler, H. K. & Grace, J. Reconstitution of photosynthesis upon rehydration in the desiccated leaves of the poikilochlorophyllous shrub Xerophyta scabrida at elevated CO2 . J. Plant Physiol.148, 345–350 (1996). Google Scholar
Tuba, Z., Protor, M. C. F. & Csintalan, Z. Ecophysiological responses of homoiochlorophyllous and poikilochlorophyllous desiccation tolerant plants: a comparison and an ecological perspective. Plant Growth Regul.24, 211–217 (1998). Google Scholar
Gechev, T. S. et al. Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell. Mol. Life Sci.70, 689–709 (2013). Google Scholar
Dinakar, C. & Bartels, D. Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome and metabolome analysis. Front. Plant Sci.4, 482 (2013). Google Scholar
Rodriguez, M. C. S. et al. Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum. Plant J.63, 212–228 (2010). Google Scholar
Costa, M.-C. D. et al. Key genes involved in desiccation tolerance and dormancy across life forms. Plant Sci.251, 162–168 (2016). Google Scholar
Williams, B. et al. Trehalose accumulation triggers autophagy during plant desiccation. PLoS Genet.11, 1–17 (2015). Google Scholar
Challabathula, D., Puthur, J. T. & Bartels, D. Surviving metabolic arrest: photosynthesis during desiccation and rehydration in resurrection plants. Ann. NY Acad. Sci.1365, 89–99 (2015). Google Scholar
Todaka, D., Shinozaki, K. & Yamaguchi-Shinozaki, K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front. Plant Sci.6, 84 (2015). Google Scholar
Tunnacliffe, A. & Wise, M. J. The continuing conundrum of the LEA proteins. Naturwissenschaften94, 791–812 (2007). Google Scholar
Wang, Y. et al. MCScanx: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res.40, e49 (2012).
Tuba, Z., Lichtenthaler, H. K., Maroti, I. & Csintalan, Z. Resynthesis of thylakoids and functional chloroplasts in the desiccated leaves of the poikilochlorophyllous plant Xerophyta scabrida upon rehydration. J. Plant Physiol.142, 742–748 (1993). Google Scholar
Bajic, J. Exploring the longevity of dry Craterostigma wilmsii (homoiochlorophyllous) and Xerophyta humilis (poikolichlorophyllous) under simulated field conditions. PhD thesis, Univ. Cape Town (2006).
Verdier, J. et al. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiol.163, 757–774 (2013). Google Scholar
Zinsmeister, J. et al. ABI5 is a regulator of seed maturation and longevity in legumes. Plant Cell28, 2735–2754 (2016). Google Scholar
Mönke, G. et al. Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res.40, 8240–8254 (2012). Google Scholar
Delahaie, J. et al. LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance. J. Exp. Bot.64, 4559–4573 (2013). Google Scholar
Khandelwal, A. et al. Role of ABA and ABI3 in desiccation tolerance. Science327, 546 (2010). Google Scholar
Griffiths, C. A. et al. Drying without senescence in resurrection plants. Front. Plant Sci.5 (2014).
Li, Z., Peng, J., Wen, X. & Guo, H. Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. J. Integr. Plant Biol.54, 526–539 (2012). Google Scholar
Reis, P. A. A. et al. The binding protein BiP attenuates stress-induced cell death in soybean via modulation of the N-rich protein-mediated signaling pathway. Plant Physiol.157, 1853–1865 (2011). Google Scholar
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE9, e112963 (2014). Google Scholar
English, A. C. et al. Mind the gap: upgrading genomes with pacific biosciences RS long-read sequencing technology. PLoS ONE7, e47768 (2012). Google Scholar
Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol.5, R12 (2004). Google Scholar
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359 (2012). Google Scholar
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics29, 1072–1075 (2013). Google Scholar
Stanke, M. & Morgenstern, B. AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res.33, 465–467 (2005). Google Scholar
Korf, I. Gene finding in novel genomes. BMC Bioinformatics5, 59 (2004). Google Scholar
Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics32, 767–769 (2016). Google Scholar
Harris, M. A. et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res.32, D258–D2261 (2004). Google Scholar
Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics21, 3674–3676 (2005). Google Scholar
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-3.0 (RepeatMasker, 2008); http://www.repeatmasker.org
Lowe, T. M. & Eddy, S. R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res.25, 955–964 (1997). Google Scholar
Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics29, 2933–2935 (2013). Google Scholar
Nawrocki, E. P. et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res.43, D130–D137 (2015). Google Scholar
Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at https://arxiv.org/abs/1207.3907# (2012).
Emms, D. M. & Kelly, S. Orthofinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol.16, 157 (2015). Google Scholar
Csuos, M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics26, 1910–1912 (2010). Google Scholar
Szinay, D. et al. High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J.56, 627–637 (2008). Google Scholar
Wan, C.-Y. & Wilkins, T. A. A modified hot borate method significantly enhances the yield of high quality RNA from cotton (Gossypium hirsutum L.). Anal. Biochem.223, 7–12 (1994). Google Scholar
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol.29, 644–652 (2011). Google Scholar
Oliver, M. J. et al. A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell23, 1231–1248 (2011). Google Scholar
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc.7, 562–578 (2012). Google Scholar
Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res.44, D279–D285 (2015). Google Scholar
Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res.39, W29–W37 (2011). Google Scholar
Freeman, T. C. et al. Construction, visualisation, and clustering of transcription networks from microarray expression data. PLoS Comput. Biol.3, 2032–2042 (2007). Google Scholar