A footprint of desiccation tolerance in the genome of Xerophyta viscosa (original) (raw)

References

  1. Kermode, A. R. Approaches to elucidate the basis of desiccation-tolerance in seeds. Seed Sci. Res. 7, 75–95 (1997).
    Google Scholar
  2. Black, M. & Pritchard, H. W. (eds) in Desiccation and Survival in Plants 207–237 (CABI, 2002); http://www.cabi.org/cabebooks/ebook/20023069464
    Google Scholar
  3. Gaff, D. F. Desiccation-tolerant flowering plants in Southern Africa. Science 174, 1033–1034 (1971).
    Google Scholar
  4. Porembski, S. in Plant Desiccation Tolerance Vol. 215 (eds Lüttge, U., Beck, E. & Bartels, D. ) 139–156 (Springer, 2011).
    Google Scholar
  5. Jönsson, K. I. & Järemo, J. A model on the evolution of cryptobiosis. Ann. Zool. Fennici. 40, 331–34040 (2003).
    Google Scholar
  6. Alpert, P. Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J. Exp. Biol. 209, 1575–1584 (2006).
    Google Scholar
  7. Oliver, M. J., Tuba, Z. & Mishler, B. D. The evolution of vegetative desiccation tolerance in land plants. Plant Ecol. 151, 85–100 (2000).
    Google Scholar
  8. Oliver, M. J., Velten, J. & Mishler, B. D. Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr. Comp. Biol. 45, 788–799 (2005).
    Google Scholar
  9. Farrant, J. M. et al. A molecular physiological review of vegetative desiccation tolerance in the resurrection plant Xerophyta viscosa (Baker). Planta 242, 407–426 (2015).
    Google Scholar
  10. Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).
    Google Scholar
  11. Chin, C.-S. et al. Phased diploid genome assembly with single molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).
    Google Scholar
  12. Song, L., Florea, L. & Langmead, B. Lighter: fast and memory-efficient sequencing error correction without counting. Genome Biol. 15, 509 (2014).
    Google Scholar
  13. Ye, C. et al. Exploiting sparseness in de novo genome assembly. BMC Bioinformatics 13, S1 (2012).
    Google Scholar
  14. Ye, C., Hill, C., Wu, S., Ruan, J. & Ma, Z. DBG2OLC: efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies. Sci. Rep. 6, 31900 (2016).
    Google Scholar
  15. Boetzer, M. et al. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinformatics 15, 211 (2014).
    Google Scholar
  16. Yoshida, K. et al. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2, e00731 (2013).
    Google Scholar
  17. de Melo, N. F. et al. Cytogenetics and cytotaxonomy of velloziaceae. Plant Syst. Evol. 204, 257–273 (1997).
    Google Scholar
  18. VanBuren, R. et al. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature 527, 508–511 (2015).
    Google Scholar
  19. Xiao, L. et al. The resurrection genome of Boea hygrometrica: a blueprint for survival of dehydration. Proc. Natl Acad. Sci. USA 112, 5833–5837 (2015).
    Google Scholar
  20. Yasui, Y. et al. Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Res. 23, 535–546 (2016).
    Google Scholar
  21. Šmarda, P. et al. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc. Natl Acad. Sci. USA 111, E4096–E4102 (2014).
    Google Scholar
  22. Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).
    Google Scholar
  23. Mitchell, A. et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 43, D213–D221 (2015).
    Google Scholar
  24. Wilson, G. A. et al. Orphans as taxonomically restricted and ecologically important genes. Microbiology 151, 2499–2501 (2005).
    Google Scholar
  25. Hilbricht, T. et al. Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phytol. 179, 877–887 (2008).
    Google Scholar
  26. Cannarozzi, G. et al. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). BMC Genomics 15, 581 (2014).
    Google Scholar
  27. Gaff, D. F. & Oliver, M. J. The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. Funct. Plant Biol. 40, 315–328 (2013).
    Google Scholar
  28. Mundree, S. G. & Farrant, J. M. in Plant Tolerance to Abiotic Stress in Agriculture: Role of Genetic Engineering (eds Cherry, J. H., Locy, R. D. & Rychter, A. ) 201–222 (Springer, 2000).
    Google Scholar
  29. Gaff, D. F. & Loveys, B. Abscisic acid levels in drying plants of a resurrection grass. Trans. Malaysian Soc. Plant Physiol. 3, 286–287 (1993).
    Google Scholar
  30. Farrant, J. M., Cooper, K., Dace, H. J. W., Bentely, J. & Hilgart, A. in Plant Stress Physiology (ed Shabala, S. ) 217–252 (CAB International, 2016).
    Google Scholar
  31. Bewley, J. D. Physiological aspects of desiccation tolerance. Annu. Rev. Plant Physiol. 30, 195–238 (1979).
    Google Scholar
  32. Csintalan, Z., Tuba, Z., Lichtenthaler, H. K. & Grace, J. Reconstitution of photosynthesis upon rehydration in the desiccated leaves of the poikilochlorophyllous shrub Xerophyta scabrida at elevated CO2 . J. Plant Physiol. 148, 345–350 (1996).
    Google Scholar
  33. Tuba, Z., Protor, M. C. F. & Csintalan, Z. Ecophysiological responses of homoiochlorophyllous and poikilochlorophyllous desiccation tolerant plants: a comparison and an ecological perspective. Plant Growth Regul. 24, 211–217 (1998).
    Google Scholar
  34. Gechev, T. S. et al. Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell. Mol. Life Sci. 70, 689–709 (2013).
    Google Scholar
  35. Dinakar, C. & Bartels, D. Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome and metabolome analysis. Front. Plant Sci. 4, 482 (2013).
    Google Scholar
  36. Rodriguez, M. C. S. et al. Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum. Plant J. 63, 212–228 (2010).
    Google Scholar
  37. Costa, M.-C. D. et al. Key genes involved in desiccation tolerance and dormancy across life forms. Plant Sci. 251, 162–168 (2016).
    Google Scholar
  38. Williams, B. et al. Trehalose accumulation triggers autophagy during plant desiccation. PLoS Genet. 11, 1–17 (2015).
    Google Scholar
  39. Challabathula, D., Puthur, J. T. & Bartels, D. Surviving metabolic arrest: photosynthesis during desiccation and rehydration in resurrection plants. Ann. NY Acad. Sci. 1365, 89–99 (2015).
    Google Scholar
  40. Todaka, D., Shinozaki, K. & Yamaguchi-Shinozaki, K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front. Plant Sci. 6, 84 (2015).
    Google Scholar
  41. Tunnacliffe, A. & Wise, M. J. The continuing conundrum of the LEA proteins. Naturwissenschaften 94, 791–812 (2007).
    Google Scholar
  42. Wang, Y. et al. MCScanx: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).
  43. Tuba, Z., Lichtenthaler, H. K., Maroti, I. & Csintalan, Z. Resynthesis of thylakoids and functional chloroplasts in the desiccated leaves of the poikilochlorophyllous plant Xerophyta scabrida upon rehydration. J. Plant Physiol. 142, 742–748 (1993).
    Google Scholar
  44. Bajic, J. Exploring the longevity of dry Craterostigma wilmsii (homoiochlorophyllous) and Xerophyta humilis (poikolichlorophyllous) under simulated field conditions. PhD thesis, Univ. Cape Town (2006).
  45. Verdier, J. et al. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiol. 163, 757–774 (2013).
    Google Scholar
  46. Zinsmeister, J. et al. ABI5 is a regulator of seed maturation and longevity in legumes. Plant Cell 28, 2735–2754 (2016).
    Google Scholar
  47. Mönke, G. et al. Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res. 40, 8240–8254 (2012).
    Google Scholar
  48. Delahaie, J. et al. LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance. J. Exp. Bot. 64, 4559–4573 (2013).
    Google Scholar
  49. Khandelwal, A. et al. Role of ABA and ABI3 in desiccation tolerance. Science 327, 546 (2010).
    Google Scholar
  50. Griffiths, C. A. et al. Drying without senescence in resurrection plants. Front. Plant Sci. 5 (2014).
  51. Li, Z., Peng, J., Wen, X. & Guo, H. Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. J. Integr. Plant Biol. 54, 526–539 (2012).
    Google Scholar
  52. Reis, P. A. A. et al. The binding protein BiP attenuates stress-induced cell death in soybean via modulation of the N-rich protein-mediated signaling pathway. Plant Physiol. 157, 1853–1865 (2011).
    Google Scholar
  53. Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).
    Google Scholar
  54. English, A. C. et al. Mind the gap: upgrading genomes with pacific biosciences RS long-read sequencing technology. PLoS ONE 7, e47768 (2012).
    Google Scholar
  55. Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
    Google Scholar
  56. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    Google Scholar
  57. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).
    Google Scholar
  58. Stanke, M. & Morgenstern, B. AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, 465–467 (2005).
    Google Scholar
  59. Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).
    Google Scholar
  60. Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767–769 (2016).
    Google Scholar
  61. Harris, M. A. et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, D258–D2261 (2004).
    Google Scholar
  62. Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).
    Google Scholar
  63. Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-3.0 (RepeatMasker, 2008); http://www.repeatmasker.org
  64. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).
    Google Scholar
  65. Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).
    Google Scholar
  66. Nawrocki, E. P. et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 43, D130–D137 (2015).
    Google Scholar
  67. Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at https://arxiv.org/abs/1207.3907# (2012).
  68. Emms, D. M. & Kelly, S. Orthofinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).
    Google Scholar
  69. Csuos, M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26, 1910–1912 (2010).
    Google Scholar
  70. Szinay, D. et al. High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J. 56, 627–637 (2008).
    Google Scholar
  71. Wan, C.-Y. & Wilkins, T. A. A modified hot borate method significantly enhances the yield of high quality RNA from cotton (Gossypium hirsutum L.). Anal. Biochem. 223, 7–12 (1994).
    Google Scholar
  72. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
    Google Scholar
  73. Oliver, M. J. et al. A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell 23, 1231–1248 (2011).
    Google Scholar
  74. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).
    Google Scholar
  75. Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2015).
    Google Scholar
  76. Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).
    Google Scholar
  77. Freeman, T. C. et al. Construction, visualisation, and clustering of transcription networks from microarray expression data. PLoS Comput. Biol. 3, 2032–2042 (2007).
    Google Scholar

Download references