Isolation of murine microglial cells for RNA analysis or flow cytometry (original) (raw)
Del Rio-Hortega, P. in Cytology and Cellular Pathology of the Nervous System (ed., Penfield, W.) 481–584 (Paul B. Hoeber, New York, 1932). Google Scholar
Perry, V.H. Macrophages and the Nervous System 62–87 (R.G. Landes, Austin, 1994). Google Scholar
Carson, M.J. Microglia as liaisons between the immune and central nervous systems: Functional implications for multiple sclerosis. Glia40, 218–231 (2002). ArticlePubMedPubMed Central Google Scholar
Streit, W.J. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia40, 133–139 (2002). ArticlePubMed Google Scholar
Rivest, S. et al. How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proc. Soc. Exp. Biol. & Med.223, 22–38 (2000). ArticleCAS Google Scholar
Vallat-Decouvelaere, A.V. et al. Neurotoxicity and neuroprotection, two aspects of microglial activation in human immunodeficiency virus (HIV) infection. Ann. Pathol.24, 31–44 (2004). ArticlePubMed Google Scholar
Byrnes, K.R. et al. Expression of two temporally distinct microglia-related gene clusters after spinal cord injury. Glia53, 420–433 (2006). ArticlePubMed Google Scholar
Gebicke-Haerter, P.J. Microarrays and expression profiling in microglia research and in inflammatory brain disorders. J. Neurosci. Res.81, 327–341 (2005). ArticleCASPubMed Google Scholar
Albright, A.V. & Gonzalez-Scarano, F. Microarray analysis of activated mixed glial (microglia) and monocyte-derived macrophage gene expression. J. Neuroimmunol.157, 27–38 (2004). ArticleCASPubMed Google Scholar
Moran, L.B., Duke, D.C., Turkheimer, F.E., Banati, R.B. & Graeber, M.B. Towards a transcriptome definition of microglial cells. Neurogenetics5, 95–108 (2004). ArticleCASPubMed Google Scholar
Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci8, 752–758 (2005). ArticleCASPubMed Google Scholar
Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science308, 1314–1318 (2005). ArticleCASPubMed Google Scholar
Stence, N., Waite, M. & Dailey, M.E. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia33, 256–266 (2001). ArticleCASPubMed Google Scholar
Lehnardt, S. et al. A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J. Immunol.177, 583–592 (2006). ArticleCASPubMed Google Scholar
Esen, N. & Kielian, T. Central role for MyD88 in the responses of microglia to pathogen-associated molecular patterns. J. Immunol.176, 6802–6811 (2006). ArticleCASPubMed Google Scholar
Hussain, S.F. et al. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro. oncol.8, 261–279 (2006). ArticleCASPubMedPubMed Central Google Scholar
Cardona, A. et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci.9, 917–924 (2006). ArticleCASPubMed Google Scholar
Huang, D. et al. The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J.20, 896–905 (2006). ArticleCASPubMed Google Scholar
Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell Biol.20, 4106–4114 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sedgwick, J.D. et al. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc. Natl. Acad. Sci. USA.88, 7438–7442 (1991). ArticleCASPubMedPubMed Central Google Scholar
Ford, A.L., Goodsall, A.L., Hickey, W.F. & Sedgwick, J.D. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J. Immunol.154, 4309–4321 (1995). CASPubMed Google Scholar
Juedes, A.E. & Ruddle, N.H. Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. J. Immunol.166, 5168–5175 (2001). ArticleCASPubMed Google Scholar
Becher, B., Durell, B.G. & Noelle, R.J. IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J. Clin. Invest.112, 1186–1191 (2003). ArticleCASPubMedPubMed Central Google Scholar
Heppner, F.L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med.11, 146–152 (2005). ArticleCASPubMed Google Scholar
Ponomarev, E.D., Shriver, L.P., Maresz, K. & Dittel, B.N. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J. Neurosci. Res.81, 374–389 (2005). ArticleCASPubMed Google Scholar
Bergmann, C.C., Altman, J.D., Hinton, D. & Stohlman, S.A. Inverted immunodominance and impaired cytolytic function of CD8+ T cells during viral persistence in the central nervous system. J. Immunol.163, 3379–3387 (1999). CASPubMed Google Scholar
Maric, D. et al. Anatomical gradients in proliferation and differentiation of embryonic rat CNS accessed by buoyant density fractionation: alpha 3, beta 3 and gamma 2 GABAA receptor subunit co-expression by post-mitotic neocortical neurons correlates directly with cell buoyancy. Eur. J. Neurosci.9, 507–522 (1997). ArticleCASPubMed Google Scholar
Lisak, R.P., Pleasure, D.E., Silberberg, D.H., Manning, M.C. & Saida, T. Long term culture of bovine oligodendroglia isolated with a Percoll gradient. Brain Res.223, 107–122 (1981). ArticleCASPubMed Google Scholar
Thorne, B., Wonnacott, S. & Dunkley, P.R. Isolation of hippocampal synaptosomes on Percoll gradients: cholinergic markers and ligand binding sites. J. Neurochem.56, 479–484 (1991). ArticleCASPubMed Google Scholar
Huang, D. et al. Pertussis toxin-induced reversible encephalopathy dependent on monocyte chemoattractant protein-1 overexpression in mice. J. Neurosci.22, 10633–10642 (2002). ArticleCASPubMedPubMed Central Google Scholar
Elhofy, A. et al. Transgenic expression of CCL2 in the central nervous system prevents experimental autoimmune encephalomyelitis. J. Leukoc. Biol.77, 229–237 (2005). ArticleCASPubMed Google Scholar