Site-specific protein labeling by Sfp phosphopantetheinyl transferase (original) (raw)
References
Lambalot, R.H. et al. A new enzyme superfamily—the phosphopantetheinyl transferases. Chem. Biol.3, 923–936 (1996). CASPubMed Google Scholar
Walsh, C.T., Gehring, A.M., Weinreb, P.H., Quadri, L.E. & Flugel, R.S. Post-translational modification of polyketide and nonribosomal peptide synthases. Curr. Opin. Chem. Biol.1, 309–315 (1997). CASPubMed Google Scholar
Belshaw, P.J., Walsh, C.T. & Stachelhaus, T. Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science284, 486–489 (1999). CASPubMed Google Scholar
La Clair, J.J., Foley, T.L., Schegg, T.R., Regan, C.M. & Burkart, M.D. Manipulation of carrier proteins in antibiotic biosynthesis. Chem. Biol.11, 195–201 (2004). CASPubMed Google Scholar
Sieber, S.A., Walsh, C.T. & Marahiel, M.A. Loading peptidyl-coenzyme A onto peptidyl carrier proteins: a novel approach in characterizing macrocyclization by thioesterase domains. J. Am. Chem. Soc.125, 10862–10866 (2003). CASPubMed Google Scholar
Vitali, F., Zerbe, K. & Robinson, J.A. Production of vancomycin aglycone conjugated to a peptide carrier domain derived from a biosynthetic non-ribosomal peptide synthetase. Chem. Commun. (Camb)21, 2718–2719 (2003). Google Scholar
Flugel, R.S., Hwangbo, Y., Lambalot, R.H., Cronan, J.E., Jr. & Walsh, C.T. Holo-(acyl carrier protein) synthase and phosphopantetheinyl transfer in Escherichia coli. J. Biol. Chem.275, 959–968 (2000). CASPubMed Google Scholar
Gehring, A.M., Lambalot, R.H., Vogel, K.W., Drueckhammer, D.G. & Walsh, C.T. Ability of Streptomyces spp. acyl carrier proteins and coenzyme A analogs to serve as substrates in vitro for E. coli holo-ACP synthase. Chem. Biol.4, 17–24 (1997). CASPubMed Google Scholar
Mofid, M.R., Finking, R. & Marahiel, M.A. Recognition of hybrid peptidyl carrier proteins/acyl carrier proteins in nonribosomal peptide synthetase modules by the 4′-phosphopantetheinyl transferases AcpS and Sfp. J. Biol. Chem.277, 17023–17031 (2002). CASPubMed Google Scholar
George, N., Pick, H., Vogel, H., Johnsson, N. & Johnsson, K. Specific labeling of cell surface proteins with chemically diverse compounds. J. Am. Chem. Soc.126, 8896–8897 (2004). CASPubMed Google Scholar
Yin, J., Liu, F., Li, X. & Walsh, C.T. Labeling proteins with small molecules by site-specific posttranslational modification. J. Am. Chem. Soc.126, 7754–7755 (2004). CASPubMed Google Scholar
Yin, J., Liu, F., Schinke, M., Daly, C. & Walsh, C.T. Phagemid encoded small molecules for high throughput screening of chemical libraries. J. Am. Chem. Soc.126, 13570–13571 (2004). CASPubMed Google Scholar
Vivero-Pol, L., George, N., Krumm, H., Johnsson, K. & Johnsson, N. Multicolor imaging of cell surface proteins. J. Am. Chem. Soc.127, 12770–12771 (2005). CASPubMed Google Scholar
Yin, J. et al. Single-cell FRET imaging of transferrin receptor trafficking dynamics by Sfp catalyzed site specific protein labeling. Chem. Biol.12, 999–1006 (2005). CASPubMedPubMed Central Google Scholar
Yin, J. et al. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc. Natl. Acad. Sci. USA102, 15815–15820 (2005). CASPubMed Google Scholar
Hermanson, G.T. Bioconjugate Techniques (Academic Press, San Diego, 1995), p. 148. Google Scholar
Stachelhaus, T. & Walsh, C.T. Mutational analysis of the epimerization domain in the initiation module PheATE of gramicidin S synthetase. Biochemistry39, 5775–5787 (2000). CASPubMed Google Scholar
Horton, R.M. et al. Gene splicing by overlap extension. Methods Enzymol.217, 270–279 (1993). CASPubMed Google Scholar
McGraw, T.E., Greenfield, L. & Maxfield, F.R. Functional expression of the human transferrin receptor cDNA in Chinese hamster ovary cells deficient in endogenous transferrin receptor. J. Cell. Biol.105, 207–214 (1987). CASPubMed Google Scholar