Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye DiI (original) (raw)

References

  1. Zhao, L. et al. Translocation of the retinal pigment epithelium and formation of sub-retinal pigment epithelium deposit induced by subretinal deposit. Mol. Vis. 13, 873–880 (2007).
    CAS PubMed PubMed Central Google Scholar
  2. Hadziahmetovic, M. et al. Ceruloplasmin/hephaestin knockout mice model morphologic and molecular features of AMD. Invest. Ophthalmol. Vis. Sci. 49, 2728–2736 (2008).
    Article PubMed Google Scholar
  3. Schlessinger, J., Axelrod, D., Koppel, D.E., Webb, W.W. & Elson, E.L. Lateral transport of a lipid probe and labeled proteins on a cell membrane. Science 195, 307–309 (1977).
    Article CAS PubMed Google Scholar
  4. de Laat, S.W., van der Saag, P.T., Elson, E.L. & Schlessinger, J. Lateral diffusion of membrane lipids and proteins is increased specifically in neurites of differentiating neuroblastoma cells. Biochim. Biophys. Acta. 558, 247–250 (1979).
    Article CAS PubMed Google Scholar
  5. Struck, D.K. & Pagano, R.E. Insertion of fluorescent phospholipids into the plasma membrane of a mammalian cell. J. Biol. Chem. 255, 5404–5410 (1980).
    CAS PubMed Google Scholar
  6. Jacobson, K., Hou, Y., Derzko, Z., Wojcieszyn, J. & Organisciak, D. Lipid lateral diffusion in the surface membrane of cells and in multibilayers formed from plasma membrane lipids. Biochemistry 20, 5268–5275 (1981).
    Article CAS PubMed Google Scholar
  7. Honig, M.G. & Hume, R.I. Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J. Cell. Biol. 103, 171–187 (1986).
    Article CAS PubMed Google Scholar
  8. Honig, M.G. & Hume, R.I. DiI and DiO: versatile fluorescent dyes for neuronal labelling and pathway tracing. Trends Neurosci. 12, 333–341 (1989).
    Article CAS PubMed Google Scholar
  9. Godement, P., Vanselow, J., Thanos, S. & Bonhoeffer, F. A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development 101, 697–713 (1987).
    CAS PubMed Google Scholar
  10. Molnar, Z. & Blakemore, C. Lack of regional specificity for connections formed between thalamus and cortex in coculture. Nature 351, 475–477 (1991).
    Article CAS PubMed Google Scholar
  11. Collazo, A., Bronner-Fraser, M. & Fraser, S.E. Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration. Development 118, 363–376 (1993).
    CAS PubMed Google Scholar
  12. Onifer, S.M., White, L.A., Whittemore, S.R. & Holets, V.R. In vitro labeling strategies for identifying primary neural tissue and a neuronal cell line after transplantation in the CNS. Cell Transplant. 2, 131–149 (1993).
    Article CAS PubMed Google Scholar
  13. Stark, M.R., Sechrist, J., Bronner-Fraser, M. & Marcelle, C. Neural tube-ectoderm interactions are required for trigeminal placode formation. Development 124, 4287–4295 (1997).
    CAS PubMed Google Scholar
  14. Yamamoto, N., Higashi, S. & Toyama, K. Stop and branch behaviors of geniculocortical axons: a time-lapse study in organotypic cocultures. J. Neurosci. 17, 3653–3663 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  15. Axelrod, D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys. J. 26, 557–573 (1979).
    Article CAS PubMed PubMed Central Google Scholar
  16. Schlesinger, B. The angioarchitecture of the thalamus in the rabbit. J. Anat. 75, 176–183 (1941).
    CAS PubMed PubMed Central Google Scholar
  17. Smith, L.E. et al. Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol. Vis. Sci. 35, 101–111 (1994).
    CAS PubMed Google Scholar
  18. Murakami, T. Application of the scanning electron microscope to the study of the fine distribution of the blood vessels. Arch. Histol. Jap. 32, 445–454 (1971).
    Article CAS PubMed Google Scholar
  19. Ohtani, O. & Murakami, T. Routine methods for vascular casting and SEM. In Scanning electron microscopy of vascular casting: methods and applications (eds. Motta, P.M., Murakami, T. & Fujita, H.) 13–25 (Kluwer Academic Publishers, Boston, 1992).
    Chapter Google Scholar
  20. Lametschwandtner, A., Lametschwandtner, U. & Weiger, T. Scanning electron microscopy of vascular corrosion casts—technique and applications. Scan. Electron. Microsc. 2, 663–695 (1984).
    Google Scholar
  21. Lametschwandtner, A., Lametschwandtner, U. & Weiger, T. Scanning electron microscopy of vascular corrosion casts—technique and applications: updated review. Scanning Microsc. 4, 889–940; discussion 941 (1990).
    CAS PubMed Google Scholar
  22. Bloom, A.L., Giddings, J.C. & Wilks, C.J. Factor 8 on the vascular intima: possible importance in haemostasis and thrombosis. Nat. New Biol. 241, 217–219 (1973).
    Article CAS PubMed Google Scholar
  23. Fina, L. et al. Expression of the CD34 gene in vascular endothelial cells. Blood 75, 2417–2426 (1990).
    CAS PubMed Google Scholar
  24. Holthofer, H. et al. Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. Lab. Invest. 47, 60–66 (1982).
    CAS PubMed Google Scholar
  25. Laitinen, L. Griffonia simplicifolia lectins bind specifically to endothelial cells and some epithelial cells in mouse tissues. Histochem. J. 19, 225–234 (1987).
    Article CAS PubMed Google Scholar
  26. Hansen-Smith, F.M., Watson, L., Lu, D.Y. & Goldstein, I. Griffonia simplicifolia I: fluorescent tracer for microcirculatory vessels in nonperfused thin muscles and sectioned muscle. Microvasc. Res. 36, 199–215 (1988).
    Article CAS PubMed Google Scholar

Download references