Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography–mass spectrometry (original) (raw)
References
Castoldi, M., Schmidt, S., Benes, V., Hentze, M.W. & Muckenthaler, M.U. miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat. Protoc.3, 321–329 (2008). ArticleCAS Google Scholar
Harsha, H.C., Molina, H. & Pandey, A. Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat. Protoc.3, 505–516 (2008). ArticleCAS Google Scholar
Villas-Bôas, S.G., Mas, S., Åkesson, M., Smedsgaard, J. & Nielsen, J. Mass spectrometry in metabolome analysis. Mass Spectrom. Rev.24, 613–646 (2005). Article Google Scholar
Kell, D.B. Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol.7, 296–307 (2004). ArticleCAS Google Scholar
Dunn, W.B., Bailey, N.J.C. & Johnson, H.E. Measuring the metabolome: current analytical technologies. Analyst130, 606–625 (2005). ArticleCAS Google Scholar
Wang, Q., Wu, C., Chen, T., Chen, X. & Zhao, X. Integrating metabolomics into systems biology framework to exploit metabolic complexity: strategies and applications in microorganisms. Appl. Microbiol. Biotechnol.70, 151–161 (2006). ArticleCAS Google Scholar
Villas-Bôas, S.G. & Bruheim, P. Cold glycerol-saline: the promising quenching solution for accurate intracellular metabolite analysis of microbial cells. Anal. Biochem.370, 87–97 (2007). Article Google Scholar
van der Werf, M.J., Overkamp, K.M., Muilwijk, B., Coulier, L. & Hankemeier, T. Microbial metabolomics: toward a platform with full metabolome coverage. Anal. Biochem.370, 17–25 (2007). ArticleCAS Google Scholar
Schauer, N. et al. GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett.579, 1332–1337 (2005). ArticleCAS Google Scholar
Villas-Bôas, S.G. Sampling and sample preparation. In Metabolome Analysis: An Introduction (eds. Villas-Bôas, S.G., Roessner, U., Hansen, M.A.E., Smedsgaard, J. & Nielsen, J) 39–82 (John Wiley & Sons, Hoboken, New Jersey, USA, 2007).
Lin, Y., Schiavo, S., Orjala, J., Vouros, P. & Kautz, R. Microscale LC-MS-NMR platform applied to the identification of active cyanobacterial metabolites. Anal. Chem.80, 8045–8054 (2008). ArticleCAS Google Scholar
Bundy, J.G., Willey, T.L., Castell, R.S., Ellar, D.J. & Brindle, K.M. Discrimination of pathogenic clinical isolates and laboratory strains of Bacillus cereus by NMR-based metabolomic profiling. FEMS Microbiol. Lett.242, 127–136 (2005). ArticleCAS Google Scholar
Koek, M.M., Muilwijk, B., van der Werf, M.J. & Hankemeier, T. Microbial metabolomics with gas chromatography/mass spectrometry. Anal. Chem.78, 1272–1281 (2006). ArticleCAS Google Scholar
Roessner, U. et al. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant. J.23, 131–142 (2000). ArticleCAS Google Scholar
Smedsgaard, J. Analytical tools. In Metabolome Analysis: An Introduction (eds. Villas-Bôas, S.G., Roessner, U., Hansen, M.A.E., Smedsgaard, J. & Nielsen, J) 83–145 (John Wiley & Sons, Hoboken, New Jersey, USA, 2007).
Villas-Bôas, S.G., Noel, S., Lane, G.A., Attwood, G. & Cookson, A. Extracellular metabolomics: a metabolic footprinting approach to assess fiber degradation in complex media. Anal. Biochem.349, 297–305 (2006). Article Google Scholar
Kanani, H.H. & Klapa, M.I. Data correlation strategy for metabolomics analysis using gas chromatography-mass spectrometry. Metab. Eng.9, 39–51 (2007). ArticleCAS Google Scholar
Winder, C.L. et al. Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites. Anal. Chem.80, 2939–2948 (2008). ArticleCAS Google Scholar
Villas-Bôas, S.G., Delicado, D.G., Åkesson, M. & Nielsen, J. Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography-mass spectrometry. Anal. Biochem.322, 134–138 (2003). Article Google Scholar
Sumner, L.W., Mendes, P. & Dixon, R.A. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry62, 817–836 (2003). ArticleCAS Google Scholar
Park, S.J. et al. Global physiological understanding and metabolic engineering of microorganisms based on omics studies. Appl. Microbiol. Biotechnol.68, 567–579 (2005). ArticleCAS Google Scholar
Bro, C. & Nielsen, J. Impact of 'ome' analyses on inverse metabolic engineering. Metab. Eng.6, 204–211 (2004). ArticleCAS Google Scholar
Lee, S.Y., Lee, D. & Kim, T.Y. Systems biotechnology for strain improvement. Trends Biotechnol.23, 349–358 (2005). ArticleCAS Google Scholar
Styczynski, M.P. et al. Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Anal. Chem.79, 966–973 (2007). ArticleCAS Google Scholar
Mapelli, V., Olsson, L. & Nielsen, J. Metabolic footprinting in microbiology: methods and applications in functional genomics and biotechnology. Trends Biotechnol.26, 490–497 (2008). ArticleCAS Google Scholar
Villas-Bôas, S.G., Åkesson, M. & Nielsen, J. Biosynthesis of glyoxylate from glycine in Saccharomyces cerevisiae. FEMS Yeast Res.5, 703–709 (2005). Article Google Scholar
Villas-Bôas, S.G., Moxley, J.F., Åkesson, M., Stephanopoulos, G. & Nielsen, J. High-throughput metabolic state analysis: the missing link in integrated functional genomics of yeasts. Biochem. J.388, 669–677 (2005). Article Google Scholar
Büscher, J.M., Czernik, D., Ewald, J.C., Sauer, U. & Zamboni, N. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal. Chem.81, 2135–2143 (2009). Article Google Scholar
Ewald, J.C., Heux, S. & Zamboni, N. High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multiwell format. Anal. Chem.81, 3623–3629 (2009). ArticleCAS Google Scholar
Villas-Bôas, S.G., Højer-Pedersen, J., Åkesson, M., Smedsgaard, J. & Nielsen, J. Global metabolite analysis of yeasts: evaluation of sample preparation methods. Yeast22, 1155–1169 (2005). Article Google Scholar
Mas, S., Villas-Bôas, S.G., Hansen, M.E., Åkesson, M. & Nielsen, J. A comparison of direct infusion MS with GC-MS for metabolic footprinting of yeast mutants. Biotechnol. Bioeng.96, 1014–1022 (2007). ArticleCAS Google Scholar
Panagiotou, G., Villas-Bôas, S.G., Christakopoulos, P., Nielsen, J. & Olsson, L. Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol. J. Biotechnol.115, 425–434 (2005). ArticleCAS Google Scholar
Villas-Bôas, S.G. et al. Phenotypic characterization of transposon-inserted mutants of Clostridium proteoclasticum B316T using extracellular metabolomics. J. Biotechnol.134, 55–63 (2008). Article Google Scholar
Mashego, M.R. et al. MIRACLE: Mass isotopomer ratio analysis of U-13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol. Bioeng.85, 620–628 (2004). ArticleCAS Google Scholar
Villas-Bôas, S.G., Koulman, A. & Lane, G.A. Analytical methods from the perspective of method standardization. In Topics in Current Genetics—Metabolomics (eds. Nielsen, J. & Jewett, M.C.) 11–52 (Springer-Verlag, Berlin Heidelberg, Germany, 2007).
Bolten, C.J., Kiefer, P., Letisse, F., Portais, J.C. & Wittmann, C. Sampling for metabolome analysis of microorganisms. Anal. Chem.79, 3843–3849 (2007). ArticleCAS Google Scholar
Brauer, M.J. et al. Conservation of the metabolomic response to starvation across two divergent microbes. Proc. Natl. Acad. Sci. USA103, 19302–19307 (2006). ArticleCAS Google Scholar
Wittmann, C., Krömer, J.O., Kiefer, P., Binz, T. & Heinzle, E. Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Anal. Biochem.327, 135–139 (2004). ArticleCAS Google Scholar
Förster, J., Famili, I., Fu, P., Palsson, B.Ø. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res.13, 244–253 (2003). Article Google Scholar
Stein, S.E. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry. J. Am. Soc. Mass Spectrom.10, 770–781 (1999). ArticleCAS Google Scholar
Freisleben, A., Schieberle, P. & Rychlik, M. Specific and sensitive quantification of folate vitamers by stable isotope dilution assays using high-performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem.376, 149–156 (2003). ArticleCAS Google Scholar
Bennett, B.D., Yuan, J., Kimball, E.H. & Rabinowitz, J.D. Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat. Protoc.3, 1299–1311 (2008). ArticleCAS Google Scholar
Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R. & Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using Nonlinear peak alignment, matching, and identification. Anal. Chem.78, 779–787 (2006). ArticleCAS Google Scholar
Tayrac, M., Lê, S., Aubry, M., Mosser, J. & Husson, F. Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: multiple factor analysis approach. BMC Genomics10, 32 (2009). Article Google Scholar
Mendes, P., Camacho, D. & de la Fuente, A. Modelling and simulation for metabolomics data analysis. Biochem. Soc. Trans.33, 1427–1429 (2005). ArticleCAS Google Scholar
Jansen, J.J., Hoefsloot, H.C.J., Boelens, H.F.M., van der Greef, J. & Smilde, A.K. Analysis of longitudinal metabolomics data. Bioinformatics20, 2438–2446 (2004). ArticleCAS Google Scholar
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72, 248–254 (1976). ArticleCAS Google Scholar
Devantier, R., Scheithauer, B., Villas-Bôas, S.G., Pedersen, S. & Olsson, L. Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnol. Bioeng.90, 703–714 (2005). ArticleCAS Google Scholar
Moxley, J.F. et al. Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc. Natl Acad. Sci. USA106, 6477–6482 (2009). ArticleCAS Google Scholar